RECORD OF ESTUARINE AND SALT MARSH METABOLISM AT CRYSTAL RIVER, FLORIDA, 1977–1981

Robert L. Knight and William F. Coggins

C. L. MONTAGUE, PRINCIPAL INVESTIGATOR

FINAL SUMMARY REPORT TO FLORIDA POWER CORPORATION CONTRACT QEA-000045

SYSTEMS ECOLOGY AND ENERGY ANALYSIS GROUP Department of Environmental Engineering Sciences University of Florida Gainesville, Florida 32611

March 1982

LIST OF TABLESII- ii
LIST OF FIGURESII- vii
CHAPTER 1—CHAPTER SUMMARIESII-1
CHAPTER 2INTRODUCTIONII-4
CHAPTER 3—COMMUNITY METABOLISM OF THE INNER DISCHARGE BAY (A) AND ITS CONTROL BAY (E) Kathryn A. BenkertII-11
CHAPTER 4—COMMUNITY METABOLISM OF THE OUTER DISCHARGE BAY (B) AND ITS CONTROL BAY (D) Arthur M. WatsonII-66
CHAPTER 5—COMMUNITY METABOLISM OF THE DISCHARGE BAY (OB) AND ITS CONTROL BAY (C) William F. CogginsII-105
CHAPTER 6—COMMUNITY METABOLISM OF THE MARSH ECOSYSTEM Jeffrey J. KosikII-136
CHAPTER 7-COMPARISON OF SELECTED PREOPERATIONAL AND OPERATIONAL MEASUREMENTS THAT CHANGED BY MORE THAN TWO STANDARD DEVIATIONSII-244
REFERENCES CITEDII-249
APPENDICES
 A—Summary of Data from the Inner Discharge Bay (A) and its Control Bay (E)

Table		Page
II-1	Crystal River power plant units service record (X = operating unit; Out = unit not opera- ting) and the differences in temperature (T) between the inner discharge bay (A) and its control bay (E)I	1-24
II-2	Results of statistical t-tests between the inner discharge bay (A) and its control bay (E): 1980 seasonal averages for tempera- ture, salinity, and extinction coefficientI	I-26
11-3	Differences in mean temperature between the inner discharge bay (A) and its control bay (E) by seasons for 1980I	I - 28
II-4	Photometer-derived extinction coefficients for the inner discharge bay (A) and its control (E) for 1980I	I-31
II-5	Results of statistical t-tests between the inner discharge bay (A) and its control bay (E): 1980 seasonal averages for total sys- tem gross productivity, net productivity, and night respirationI	1 - 32
II-6	Results of statistical t-tests between the inner discharge bay (A) and its control bay (E): 1980 seasonal averages for plankton gross productivity, plankton net productiv- ity, and plankton respirationI	1 - 35
II-7	Percent of the seasonal average total system gross productivity due to plankton gross productivity in the control bay (E) and the inner discharge bay (A) for 1980I	I-38
II-8	Results of statistical t-tests for evaluation of mean ecological efficiencies and P/R ratios between the inner discharge bay (A) and its control bay (E) for 1980I	I-39
11-9	Results of statistical t-test for comparison of temperature and salinity in the inner discharge bay (A) between 1973 and 1980I	I-41
II - 10	Results of statistical t-tests for comparison of total system gross productivity, net productivity, and night respiration in the	

	inner discharge bay (A) between 1973 (preoperational) and 1980
II-11	Results of statistical t-tests for comparison of plankton gross productivity, plankton net productivity, and plankton respiration in the inner discharge bay (A) between 1973 (preoperational) and 1980II-47
11-12	Seasonal & T's between inner discharge bay (A) and its control bay (E) for 1973, 1977—1980II-50
11-13	Mean annual salinity for the inner discharge bay and its control bay (E) for 1973, 1978—1980II-52
11-14	The seasonal average percent system gross productivity of the inner discharge bay (A) relative to the system gross productivity of its control bay (E) for 1973, 1977—1980II-56
11-15	The seasonal average percent plankton gross productivity of the inner discharge bay (A) relative to the plankton gross productivity of its control bay (E) for 1973, 1977—1980II-60
II - 16	Plankton gross productivity as a percentage of total gross productivity for the inner discharge bay (A) and its control bay (E) for preoperational and postoperational yearsII-62
11-17	Results of statistical t-tests between the outer discharge bay (B) and its control bay (D): 1980 seasonal averages for tempera- ture, salinity, and extinction coefficients
II - 18	Photometer-derived extinction coefficients for the outer discharge bay (B) and its control bay (D) for 1980II-73
II-19	Results of statistical t-tests between the outer discharge bay (B) and its control bay (D): 1980 seasonal averages for gross productivity, net productivity, and night respirationII-74
11-20	Results of statistical t-tests between the outer discharge bay (B) and its control bay (D): 1980 seasonal averages for gross

	plankton productivity, plankton net productivity, and plankton respiration
II-21	Results of statistical t-tests for evaluation of mean ecological efficiencies and P/R ratios between the outer discharge bay (B) and its control bay (D) for 1980
II - 22	Plankton gross productivity as a percentage of total gross productivity for the outer discharge bay (B) and its control bay (D) for 1973 (preoperational) and 1977-1980 (postoperational)
II-23	The seasonal average percent gross productiv- ity of the outer discharge bay (B) relative to the gross productivity of its control bay (D) for 1973, 1977—1980
II-24	The seasonal average percent plankton gross productivity of the outer discharge bay (B) relative to the plankton gross productivity of its control bay (D) for 1973, 1977—1980II-103
II - 25	Results of statistical t-tests between the discharge bay (OB) and its control bay (C): 1980 seasonal averages for temperature, salinity, and extinction coefficientsII-107
II - 26	Photometer-derived extinction coefficients for the discharge bay (OB) and its control bay (C) for 1980II-112
II-27	Results of statistical t-tests between the discharge bay (OB) and its control bay (C): 1980 seasonal averages for gross productivity, net productivity, and night respiration
II-28	Results of statistical t-tests between the discharge bay (OB) and its control bay (C): 1980 seasonal averages for gross plankton productivity, plankton net productivity, and plankton respiration
II-29	Results of statistical t-tests for evaluation of mean ecological efficiencies and P/R ratios between the discharge bay (OB) and its control bay (C) for 1980
II-30	The seasonal average percent gross productiv- ity of the discharge bay (OB) relative to the gross productivity of the control bay (C) for 1977—1980II-127
11-31	The seasonal average percent plankton gross II-iv

	productivity of the discharge bay (OB) relative to the plankton gross productivity of the control bay (C) for 1977—1980
11-32	Plankton gross productívity as a percentage of total gross productivity for the discharge bay (OB) and control bay (C) for postopera- tional years (1977—1980)II-133
11-33	Mean intake (bay E) and discharge (bay A) water temperatures and temperature differences for 1980II-146
II-34	Seasonal means of <u>Spartina</u> stalk density for 1980II-148
II - 35	Seasonal means of <u>Spartina</u> aboveground biomass (after drying at 70°C) for 1980
11-36	Seasonal means of specific weight of <u>Spartina</u> for 1980II-153
II-37	Seasonal means of <u>Spartina</u> stalk height for 1980II-155
11-38	Seasonal means of <u>Littorina</u> and <u>Uca</u> burrow density in <u>Spartina</u> marshes for 1980II-157
II-39	Seasonal means of flowering <u>Spartina</u> stalks for 1980II-160
11-40	Seasonal means of <u>Spartina</u> metabolism for 1980, normalized for weight
II-41	Seasonal means of <u>Spartina</u> P/R ratios for 1980II-166
II-42	Seasonal means of <u>Juncus</u> shoot densities for 1980II-169
II-43	Seasonal means of <u>Juncus</u> aboveground biomass (after drying at 70°C) for 1980
II - 44	Seasonal means of specific weights of <u>Juncus</u> for 1980II-173
II - 45	Seasonal means of <u>Juncus</u> shoot heights for 1980II-175
II - 46	Seasonal means of flowering <u>Juncus</u> plants for 1980II-177
II-47	Seasonal means of <u>Littorina</u> and <u>Uca</u> burrow density in <u>Juncus</u> marshes for 1980

II-48	Seasonal means for <u>Juncus</u> metabolism values for 1980, normalized for weight
II-49	Seasonal means of <u>Juncus</u> P/R ratios for 1980II-186
11-50	Mean seasonal discharge and intake water temp- eratures and the change in temperature for 1973—1980II-189
II - 51	Comparison of <u>Spartina</u> stalk densities for 1980 with previous year's seasonal meansII-191
II - 52	Comparison of <u>Spartina</u> biomass weights for 1980 with previous year's seasonal meansII-194
11-53	Comparison of <u>Spartina</u> specific weights for 1980 with previous year's seasonal meansII-197
II - 54	Comparison of <u>Spartina</u> stalk heights for 1980 with previous year's seasonal means
11-55	Comparison of <u>Littorina</u> densities in <u>Spartina</u> marshes for 1980 with previous year's seasonal meansII-202
II-56	Comparison of <u>Uca</u> burrow densities in <u>Spartina</u> marshes for 1980 with previous year's seasonal meansII-204
11-57	Comparison of <u>Spartina</u> flowering stalk densi- ties for 1980 with previous year's sea- sonal meansII-206
11-58	Comparison of <u>Spartina</u> metabolism for 1980 with previous year's seasonal meansII-209
II-59	Comparison of <u>Spartina</u> P/R ratios for 1980 with previous year's seasonal meansII-214
II - 60	Comparison of <u>Juncus</u> biomass weights for 1980 with previous year's seasonal meansII-217
II - 61	Comparison of <u>Juncus</u> shoot heights for 1980 with previous year's seasonal meansII-220
11-62	Comparison of <u>Juncus</u> shoot densities for 1980 with previous year's seasonal meansII-222
II-63	Comparison of <u>Juncus</u> specific weights for 1980 with previous year's seasonal means
II - 64	Comparison of <u>Littorina</u> densities in <u>Juncus</u> marshes for 1980 with previous year's seasonal means

II-65	Comparison of <u>Uca</u> burrow densities in <u>Juncus</u> marshes for 1980 with previous year's seasonal meansII-228
II-66	Comparison of <u>Juncus</u> flowering shoot densities for 1980 with previous year's seasonal meansII-230
II-67	Comparison of <u>Juncus</u> metabolism for 1980 with previous year's seasonal meansII-234
II-68	Comparison of <u>Juncus</u> P/R ratios for 1980 with previous year's seasonal meansII-239
II-69	Seasonal means of the inner discharge bays (A and B) from the 1980 operational and 1973 preoperational studiesII-245
II-70	Comparison of preoperational (1973) with oper- ational (1980) seasonal means for Juncus roemarianus in the discharge marsh areaII-246
II - 71	Comparison of preoperational (1973) with oper- ational (1980) seasonal means for <u>Spartina</u> <u>alterniflora</u> in the discharge marsh areaII-247
II - 72	Mean percent saturation of water with dis- solved oxygen at point of discharge, intake screens, and outer bay during dawn-dusk- dawn samplingII-306

LIST OF FIGURES

Figure	Page
II-1	The Crystal River power plants in relation to the major features of the regional coastlineII-8
11-2	Locations of the inner discharge bay (A) and its control bay (E); outer discharge bay (B) and its control bay (D); and the outer- most discharge bay (OB) and its control bay (C) at the Crystal River Power Plant siteII-9
II-3	Example of graphical format for calculation of community metabolism from diurnal measure- ments in the inner discharge bay (A), Octo- ber 1, 1977, and its control bay (E), Octo- ber 2, 1977II-18
II-4	Comparison of 1980 mean seasonal temperatures for the inner discharge bay (A) and its control bay (E)II-27
II-5	Mean seasonal salinities for the inner dis- charge bay (A) and its control bay (E) for 1980II-29
II-6	Mean seasonal system gross productivity of the inner discharge bay (A) and its control bay (E) for 1980II-33
II-7	Mean seasonal system net productivity and sys- tem respiration of the inner discharge bay (A) and its control bay (E) for 1980
II-8	Mean seasonal plankton gross productivity of the inner discharge bay (A) and its control bay (E) for 1980II-36
II-9	Mean seasonal plankton net productivity and plankton respiration of the inner discharge bay (A) and its control bay (E) for 1980
11-10	Comparison of the mean seasonal temperature and salinity of the inner discharge bay (A) in 1973 and 1980II-42
11-11	Mean seasonal system gross productivity of the inner discharge bay (A) in 1973 and 1980

Figure

II-12	Mean seasonal system net productivity and sys- tem respiration of the inner discharge bay (A) in 1973 and 1980II-46
11-13	Mean seasonal plankton gross productivity, net productivity, and respiration of the inner discharge bay (A) in 1973 and 1980
II - 14	Mean seasonal temperatures of the inner dis- charge bay (A) and its control bay (E) for 1973, 1977—1980II-49
11-15	Mean seasonal salinities of the inner dis- charge bay (A) and its control bay (E) for 1973, 1977-1980II-51
11-16	Mean seasonal system gross productivity of the inner discharge bay (A) and its control bay (E) for 1973, 1977—1980
11-17	Mean seasonal system net productivity and res- piration of the inner discharge bay (A) and its control bay (E) for 1973, 1977—1980
II-18	Mean seasonal plankton gross productivity of the inner discharge bay (A) and its control bay (E) for 1973, 1977—1980
II - 19	Mean seasonal plankton net productivity and respiration of the inner discharge bay (A) and its control bay (E) for 1973, 1977— 1980II-59
11-20	Mean seasonal ecological efficiencies of the inner discharge bay (A) and its control bay (E) for 1973, 1977—1980II-63
II-21	Seasonal mean temperature in the outer dis- charge and control bays for 1980
II - 22	Seasonal mean salinity in the outer discharge and control bays for 1980
11-23	Seasonal average light extinction coefficients for the outer discharge and control bays for 1980II-72
II-24	Seasonal mean system gross productivity for the outer discharge and control bays for 1980II-75

Figure		Page
II - 25	Seasonal mean system net productivity and respiration for the outer discharge and control bays for 1980	II-76
11-26	Seasonal mean plankton gross productivity for the outer discharge and control bays for 1980	II-79
11-27	Seasonal mean plankton net productivity and respiration for the outer discharge and control bays for 1980	II-80
II-28	Comparison of 1973 and 1980 values for mean seasonal temperatures for the outer dis- charge bay	II-82
II-29	Comparison of 1973 and 1980 values for mean seasonal salinity and light extinction coefficients for the outer discharge bay	II-83
II ~ 30	Comparison of 1973 and 1980 values for mean seasonal system gross productivity for the outer discharge bay	II-85
II-31	Comparison of 1973 and 1980 values for mean seasonal system net productivity and respiration for the outer discharge bay	II-86
II-32	Comparison of 1973 and 1980 values for mean seasonal plankton gross productivity for the outer discharge bay	II-87
11-33	Comparison of 1973 and 1980 values for mean seasonal plankton net productivity and respiration for the outer discharge bay	II-88
II-34	Seasonal mean temperature for the outer discharge and control bays along with the schedule of power plant operation from 1973—1980	II-89
II - 35	Seasonal mean salinity for the outer discharge and control bays along with the schedule of power plant operation from 1973—1980	II-91
11-36	Seasonal mean light extinction coefficients for the outer discharge and control bays along with the schedule of power plant operation from 1973—1980 II-x	II-92

Figure

igure		Page
11-37	Seasonal mean system gross productivyt for the outer discharge and control bays along with the schedule of power plant operation from 1973—1980	II-93
II - 38	Seasonal mean system net productivity and res- piration for the outer discharge and con- trol bays along with the schedule of power plant operation from 1973—1980	••II-94
II-39	Seasonal mean plankton gross productivity for the outer discharge and control bays along with the schedule of power plant operation from 1973—1980	••II-95
II-40	Seasonal mean plankton net productivity and respiration for the outer discharge and control bays along with the schedule of power plant operation from 1973—1980	II-97
11-41	Seasonal mean ecological efficiencies for the outer discharge and control bays along with the schedule of power plant operation from 1973—1980	••II-98
II - 42	Seasonal mean temperature in the discharge and control bays for 1980	II-108
11-43	Seasonal mean salinity in the discharge and control bays for 1980	II - 109
II - 44	Seasonal average light extinction coefficients for the control and discharge bays for 1980	II-111
II - 45	Seasonal mean system gross productivity for the discharge and control bays for 1980	II-114
II - 46	Seasonal mean system net productivity and respiration for the discharge and control bays for 1980	II-115
II - 47	Seasonal mean plankton gross productivity for the discharge and control bays for 1980	••II-117
II - 48	Seasonal mean plankton net productivity for the discharge and control bays for 1980	••II-118
II-49	Seasonal mean plankton respiration for the discharge and control bays for 1980	II-119

Figure	Page
11-50	Seasonal mean temperature for the discharge and control bays along with the schedule of power plant operation from 1977—1980
II-51	Seasonal mean salinity for the discharge and control bays along with the schedule of power plant operation from 1977—1980
II - 52	Seasonal mean light extinction coefficients for the discharge and control bays along with the schedule of power plant operation from 1977—1980II-124
II-53	Seasonal mean system gross productivity for the discharge and control bays along with the schedule of power plant operation from 1977—1980II-126
II-54	Seasonal mean system net productivity and respiration for the discharge and control bays along with the schedule of power plant operation from 1977—1980
II-55	Seasonal mean plankton gross productivity for the discharge and control bays along with the schedule of power plant operation from 1977—1980II-129
11-56	Seasonal mean plankton net productivity and respiration for the discharge and control bays along with the schedule of power plant operation from 1977—1980
II-57	Seasonal mean ecological efficiencies for the discharge and control bays along with the schedule of power plant operation from 1977—1980II-135
II - 58	Map showing locations of preoperational and postoperational sampling sites
II-59	General schematic of metabolism apparatus
II-60	Intake and discharge water temperatures along with the schedule of power plant operation for 1980. Upper graph represents seasonal averages at monitoring stations A (dis- charge) and E (intake). The differences between the means (ΔT) are presented on the lower graph

Figure	Page
II - 61	Seasonal means of <u>Spartina</u> stalk densities for 1980II-14
II - 62	Seasonal means of <u>Spartina</u> aboveground biomass weight per square meter (after drying at 70°C) for 1980II-15
II-63	Seasonal means of <u>Spartina</u> specific weight (weight per stalk) for 1980
II-64	Seasonal means of <u>Spartina</u> stalk height for 1980II-15
II-65	Seasonal means of <u>Spartina</u> flowers and <u>Littor</u> - <u>ina</u> per square meter for 1980
II-66	Seasonal means of <u>Uca</u> burrows per square meter in <u>Spartina</u> marshes for 1980II-16
II-67	Seasonal means for <u>Spartina</u> gross productivity for 1980II-16
11-68	Seasonal means for <u>Spartina</u> net productivity and nighttime respiration for 1980
II - 69	Seasonal means for <u>Spartina</u> P/R ratios for 1980II-16
II-70	Seasonal means for <u>Juncus</u> shoot densities for 1980II-17
II - 71	Seasonal means for <u>Juncus</u> aboveground biomass weight per square meter (after drying at 70°C) for 1980II-17
II - 72	Seasonal means for <u>Juncus</u> specific weight (weight per shoot) for 1980II-17
II-73	Seasonal means of <u>Juncus</u> shoot heights for 1980II-17
II - 74	Seasonal means of <u>Juncus</u> flowers and <u>Littorina</u> per square meter for 1980
11-75	Seasonal means of <u>Uca</u> burrows per square meter in <u>Juncus</u> marshes for 1980II-18
II - 76	Seasonal means of <u>Juncus</u> gross productivity for 1980II-18
II-77	Seasonal means of <u>Juncus</u> net productivity and nighttime respiration for 1980
II - 78	Seasonal means of <u>Juncus</u> P/R ratios for 1980II-18
II - 79	Intake and discharge water temperatures along with the schedule of power plant operation

Figure

	(when available) for 1973—1980. Upper graph represents seasonal averages at moni- toring stations A (discharge) and E (in- take). The differences between the means (T) are presented on the lower graphII-190
II-80	Comparison of preoperational (1973) with 1977—1980 seasonal means for <u>Spartina</u> live stalk densitiesII—192
II-81	Comparison of preoperational (1973) with 1977—1980 seasonal means for <u>Spartina</u> dead stalk densitiesII—193
II-82	Comparison of preoperational (1973) with 1977—1980 seasonal means for <u>Spartina</u> aboveground live biomass weights
II-83	Comparison of preoperational (1973) with 1977—1980 seasonal means for <u>Spartina</u> aboveground dead biomass weights
II - 84	Comparison of preoperational (1973) with 1977—1980 seasonal means for <u>Spartina</u> specific weightsII-198
II - 85	Comparison of preoperational (1973) with 1977—1980 seasonal means for <u>Spartina</u> stalk heightsII—200
II-86	Comparison of preoperational (1973) with 1977—1980 seasonal means of <u>Littorina</u> densities in the <u>Spartina</u> marshes
II-87	Comparison of preoperational (1973) with 1977—1980 seasonal means of <u>Uca</u> burrow densities in the <u>Spartina</u> marshes
II-88	Comparison of preoperational (1973) with 1977—1980 seasonal means of <u>Spartina</u> flowering stalk densities
II-89	Comparison of preoperational (1973) with 1977—1980 seasonal means of <u>Spartina</u> net productivityII-211
II-90	Comparison of preoperational (1973) with 1977—1980 seasonal means of <u>Spartina</u> nighttime respirationII-212

Figure		Page
II-91	Comparison of preoperational (1973) with 1977—1980 seasonal means of <u>Spartina</u> gross productivity	····II-213
II-92	Comparison of preoperational (1973) with 1977—1980 seasonal means of <u>Spartina</u> P/R ratios	II-215
II-93	Comparison of preoperational (1973) with 1977—1980 seasonal means for <u>Juncus</u> aboveground live biomass weights	II-218
II-94	Comparison of preoperational (1973) with 1977—1980 seasonal means for <u>Juncus</u> aboveground dead biomass weights	II-219
11-95	Comparison of preoperational (1973) with 1977—1980 seasonal means for <u>Juncus</u> shoot heights	••••• II-221
II-96	Comparison of preoperational (1973) with 1977—1980 seasonal means for <u>Juncus</u> live shoot densities	II-223
II-97	Comparison of preoperational (1973) with 1977—1980 seasonal means for <u>Juncus</u> specific weights	II-225
II-98	Comparison of preoperational (1973) with 1977—1980 seasonal means of <u>Littorina</u> densities in the <u>Juncus</u> marshes	••••II-227
II-99	Comparison of preoperational (1973) with 1977—1980 seasonal means of <u>Uca</u> burrow densities in the <u>Juncus</u> marshes	····II-229
II-100	Comparison of preoperational (1973) with 1977—1980 seasonal means of <u>Juncus</u> flowering shoot densities	II-231
II-101	Comparison of preoperational (1973) with 1977—1980 seasonal means of <u>Juncus</u> dead shoot densities	II-232
11-102	Comparison of preoperational (1973) with 1977—1980 seasonal means of <u>Juncus</u> net productivity	II-236
II-103	Comparison of preoperational (1973) with 1977—1980 seasonal means of <u>Juncus</u> nighttime respiration	II-237

Figure		Page
II - 104	Comparison of preoperational (1973) with 1977—1980 seasonal means of <u>Juncus</u> gross productivity	II-238
II-105	Comparison of preoperational (1973) with 1977—1980 seasonal means of <u>Juncus</u> P/R ratios	II-240

CHAPTER 1

CHAPTER SUMMARIES

Inner Discharge Bay

- The inner discharge bay system gross productivity in 1980 approximated 33% of the control bay system gross productivity. This was a decline from the 46% relative system gross productivity measured in 1978 and 1979.
- Plankton gross productivity accounted for approximately 87% of the discharge system gross productivity and 26% of the control system gross productivity.
- 3. Unit 3 was off line 50% of the year. This was reflected in lower spring and summer temperatures in the discharge bay.
- 4. System gross productivity, system net productivity, and ecological efficiencies all exhibited a decline from spring to fall in 1980. There were no substantial changes in the independent variables such as salinity and temperature to explain this decline.

Outer Discharge Bay

- 1. The outer discharge bay's system gross productivity averaged 34% higher or approximately 1.20 g $O_2 \cdot m^{-2} \cdot d^{-1}$ greater than the control bay on an annual basis.
- 2. Mean seasonal temperatures for the outer discharge bay were significantly higher during 1980 with respect to its control bay. Temperature in the discharge bay averaged 3.7°C greater than those in the control bay.
- 3. An apparent trend towards increased productivity in the outer discharge bay was accompanied by a decrease in productivity of its control bay.

II-l

4. Operation of Unit 3 in conjunction with Units 1 and 2 at the Crystal River power plant caused no measureable decrease of system metabolism in the outer discharge bay ecosystem.

Bays OB and C

- 1. System gross productivity was 1.4 g $O_2 \cdot m^{-2} \cdot d^{-1}$ (39%) higher in the outermost discharge bay compared to its control in 1980.
- Temperatures of the discharge bay were approximately 2-4°C higher than in the corresponding control bay during 1977-1980.
- Both the discharge and control bays were plankton dominated in terms of gross productivity.
- 4. Postoperational (1977-1980) trends in the discharge bay suggest that adaptation to thermal effluent is taking place while long-term trends in the control bay appear to indicate possible impacts of plant operation on the non-thermally affected estuary at Crystal River.

Marsh Metabolism

- 1. As in previous years, both <u>Juncus</u> and <u>Spartina</u> marshes in the thermally affected areas were characterized by shorter, lower specific weight, and more numerous plants per unit area than the control marshes. Higher dead <u>Juncus</u> biomass was measured in the thermal marsh. Marsh productivies were similar in thermal and control marshes.
- 2. Seasonal mean <u>Littorina</u> biomass was consistently higher in both <u>Juncus</u> and Spartina thermal marshes than in their control marshes.
- 3. <u>Uca</u> burrow densities in the <u>Spartina</u> marsh were greater in the discharge area than in the intake area in the cooler seasons (winter and spring). This suggests stimulation of invertebrate activity in response to thermal loading.

4. Differences in <u>Spartina</u> specific weight, stalk heights, and stalk density that were observed between 1980 and previous years' measurements on the intake suggest either structurally different communities have been sampled or that the control marsh is undergoing long-term biomass fluctuations.

CHAPTER 2

INTRODUCTION

When conditions of temperature and circulation of an estuary are changed, a self-organization process may cause a new kind of estuarine ecosystem to develop, one capable of using the new conditions as resources rather than as stresses. On the west coast of Florida at Crystal River, successive construction of three power plants using once-through cooling starting in 1967 have provided opportunity to observe these changes and determine how the developing ecosystems compare with those that develop nearby without the influences of power plants.

This is a report on measurements of estuarine metabolism after a nuclear plant (Unit 3) came on line in 1977 and the changes observed. In part the power plants have provided pump-driven circulation that replaces the natural circulation interrupted by long canal spoil jetties. The estuarine temperatures at Crystal River have been increased approximately 4°C. High productivity is well known in hot springs where high temperatures are regular, with high photosynthetic efficiencies found at 50°C. Turbidity is one stress factor of particular importance following recent dredging activity, in construction, and where barges operate in supplying fuel. Highly productive turbid waters are known. Because the plants have been on and off the temperature and current regimes to which the organisms have been adapting have been variable.

If environmental systems in contact with technology can develop productive interfaces, a pattern of man and nature can evolve that helps the economy of nature and that of man symbiotically. The alternatives of high technology waste treatment, cooling towers, etc. may unnecessarily

divert potential resources from the estuary and also divert economic resources of the economy. The relative magnitudes of these alternatives can be evaluated with energy analysis as done for Crystal River earlier (Odum 1974; Kemp et al. 1977). The data for such evaluations comes from monitoring the success of the estuary in self-organizing a productive metabolism to go with the new and variable conditions.

It is the purpose of this study to report data on total ecosystem functioning of the estuarine systems receiving discharge waters compared to control locations in 1980, to preoperational (1973) data and to data after the nuclear unit went into operation (1977-1980). Comparisons are made between measurements reported here and in earlier reports and dissertations (Lehman 1974; Young 1974; McKellar 1975; Homer 1976, 1977; Kemp 1976; Smith 1976; Hornbeck 1979; Odum et al. 1978; Caldwell et al. 1979, 1980).

In order to analyze the overall effect of additional thermal discharge from the nuclear unit on the Crystal River estuary and adjacent salt marsh ecosystem, system-level parameters were monitored including total system metabolism (production and respiration) and plankton metabolism monitored in light and dark bottles. In addition, environmental factors that affect system functioning have been determined. These include solar radiation (insolation), water temperature, air temperature, salinity, turbidity, wind speed, depth, and current.

System metabolism, as estimated by system gross production (productivity) and respiration, is an integrated measure of the functioning of the entire biological system. System gross production is the sum of all photosynthetic processes and system respiration sums all respiration

processes. In this manner, the functioning of <u>all</u> populations may be measured in different areas for comparison.

The theory of maximum power selection (Boltzman 1886; Lotka 1922; Odum 1971) suggests that environmental systems and those of humanity self-organize by trial, error, and selection so as to maximize their energy inflow and use that energy to meet all other needs so as to prevail in competition. Total productivity and total respiratory metabolism are measures of total energy conversion and utilization. These measures of total metabolism monitor the success of the ecosystems in developing a pattern that is as good as others in use of the available energies. Thus system metabolism may be the single most important variable to appraise conditions in an estuary.

Study Site and Sampling Plan

The Florida Power Corporation has constructed three electric-power generating units and is in the process of building two additional units on the Gulf of Mexico near Crystal River, Florida. Two coal-fired units, Units 1 and 2, with a combined capacity of 897 megawatts, came on line in 1966 and 1969, respectively. These two units require approximately 2410 $m^{3} \cdot min^{-1}$ of cooling water. This water is drawn from off shore via a long intake canal and is discharged in shore via a short discharge canal. Average thermal elevation of the effluent water relative to the intake (Δ T) was reported as 5-6°C by McKellar (1975). The first studies of metabolism were made in 1973 when these plants were operating.

A third nuclear-powered unit, with 855-megawatt capacity, came on line in 1977 using once-through cooling via the same intake and discharge

canals. This unit pumps an additional 2366 $m^3 \cdot min^4$ and increases overall ΔT of the power station to approximately 8-9°C.

The Crystal River power plants are located on the Gulf of Mexico coastline in Citrus County approximately 5 km north of the Crystal River and about 5 km south of the Cross Florida Barge Canal and the Withlacoochee River (Fig. II-1). The coastline in this area is characterized by low wave energies and the drowned karst topography typical of this part of Florida's west coast. Tidal marshes are dominated by the black rush <u>Juncus roemarianus</u> with a narrow band of <u>Spartina alterniflora</u> fronting the <u>Juncus</u> on the seaward side. Numerous oyster bars occur roughly parallel to the coastline extending 3 to 4 km seaward.

Located among these oyster bars are the bays currently under study. Figure II-2 shows the location of these sampling stations. Stations A, B, C, and D were the initial primary bay stations and have been sampled from the beginning of the project. It was discovered during the spring of the first year's research effort that only stations B and D (McKellar's former outer discharge and control bays, respectively) and station A (Smith's former discharge bay) were directly comparable with areas previously studied. As a result of these inadequacies in the initial phases of this study, several stations were added to complement those of the original sampling design. After comparability studies were run during the summer of 1977 between Smith's former inner discharge control area (located at Fort Island) and the most inshore area to the south of the intake canal, the decision was made to add station E as a control for the bay in area A. Station OB was added in the summer 1977 as a comparable discharge bay for intake control area C.

Figure II-1. The Crystal River power plants in relation to the major features of the regional coastline.

Figure II-2. Locations of the inner discharge bay (A) and its control bay (E); outer discharge bay (B) and its control bay (D); and the outermost . discharge bay (OB) and its control bay (C) at the Crystal River Power Plant site.

The marsh metabolism and harvest areas are also shown in Fig. II-2. Since the barge formerly used by Don Young was no longer available, it was decided (after a personal site visit by Young) to develop a land-based operation. The study area in the discharge marsh is included in the area previously studied by Young. Since Young's intake marsh site on Negro Island was no longer accessible, close inspection of the area revealed an apparent comparable site on the south side of the intake canal.

In all cases, efforts were made to duplicate sampling methods used in the previous studies to insure comparability. Sampling and calculation methods are described in greater detail in chapter 3 of this report.

CHAPTER 3

COMMUNITY METABOLISM OF THE INNER DISCHARGE BAY (A) AND ITS CONTROL BAY (E)

Kathryn A. Benkert

Introduction

This chapter includes the results of the 1980 metabolic measurements for the inner discharge bay (A) and its control bay (E). The 1980 data are compared to both the 1972-1974 preoperational data (Smith 1976) and the 1977-1979 postoperational data (Odum et al. 1978; Caldwell et al. 1979, 1980).

Study Site

The locations of the inner discharge bay and its control bay are shown in Fig. II-lb. The inner discharge bay is bounded on the landward side by a <u>Spartina-Juncus</u> salt marsh. A series of oyster reefs separates the inner bay from the outer discharge bay (B).

The control bay, adjoining the south side of the power plant intake canal, approximates the conditions that would exist in the inner discharge bay if the power plant and canal structures were absent. Like the inner discharge bay, the control bay is bordered on the landward side by a <u>Spartina-Juncus</u> marsh and on the seaward side by oyster reefs. In the past, the control bay was used as a control station for the inner discharge bay by other researchers monitoring fish, invertebrates, and macrophyte stocks (Smith 1976).

Materials and Methods

Community metabolism was measured using methods as nearly identical as possible to those used during the preoperational studies at the Crystal River Power Plant (McKellar 1975; Smith 1976; Kemp 1977). The methods for the diurnal sampling of community metabolism were based on techniques developed by Odum and Hoskins (1958), Odum and Wilson (1962), and Odum (1967). The three-point abbreviated diurnal, or dawn-dusk-dawn, sampling was based on methods used by McConnell (1962) and McKellar (1975). Plankton metabolism was measured by the light and dark bottle incubation technique (American Public Health Association [APHA] 1975).

Two consecutive 24-hour diurnal sampling programs were accomplished each quarter. Each bay was sampled once approximately every 4 hours at three different stations randomly selected in that bay. Duplicate water samples were collected at each station for dissolved oxygen analysis.

The dawn-dusk-dawn measurements were made approximately every 2 weeks for a 3-day period. This method is an abbreviation of the diurnal method and involved measuring the minimum (dawn) and maximum (dusk) levels of oxygen in the water column. Duplicate water samples were collected at one station in each bay for dissolved oxygen analysis.

Dissolved Oxygen Analysis

The dissolved oxygen content of the water was determined by the sodium azide modification of the Winkler method (APHA 1975). The Winkler method was adapted for use with 125-ml flat-topped glass reagent bottles instead of the standard 300-ml BOD bottles. McKellar (1975) and Smith (1976) discussed the advantages, disadvantages, and errors inherent to the usage of the 125-ml bottles.

· 11-12

The water samples were collected by allowing surface water to flow into a bucket while avoiding unnecessary agitation. Water was siphoned from the bottom of the bucket into the collection bottle. The bottle was allowed to flush at least twice, filling from the bottom of the bottle. The siphon was then slowly removed, and the cap was replaced on the bottle to dispel excess water. Removing the cap, reagents were then added to fix the oxygen as follows: 1. 0.5 ml of MnSO₄ was added below the water's surface; and 2. 0.5 ml of alkali-iodide-azide was added below the water's surface. After carefully replacing the cap to avoid air bubble entrapment, the bottle was inverted 15+ times to insure proper mixing of the reagents. The precipitate was allowed to settle and the bottle was shaken again.

Each of the dissolved oxygen water samples collected at a station was filled from a different seawater bucket sample. The amount of time needed to fill a bottle allowed two potentially different water masses to be sampled by bucket collection at a station.

Upon returning to the laboratory and the second settling of precipitate, 0.5 ml of concentrated sulfuric acid (H_2SO_4) was added to each bottle. The bottles were then shaken until the precipitate had completely dissolved. Titration followed within 8 hours. Smith (1976) presented the results of an experiment testing the effects of a time delay of samples with and without acidification prior to titration for the final dissolved oxygen measurement. The differences found between immediate and delayed titration were considered too small to have a significant effect on the overall data. Titration of the samples was sometimes delayed up to 8 hours, depending on field operation difficulties.

11-13

For titration, a 101-ml portion of each sample was measured and titrated with 0.012 N sodium thiosulfate solution. Paragon starch was used as an end point indicator. The use of 0.012 N sodium thiosulfate allowed direct reading of the titrant as dissolved oxygen: 1 ml thiosulfate = 1 g·m⁻³ dissolved oxygen.

The above procedure was used for oxygen determinations in both the 24-hour diurnal series and the dawn-dusk-dawn methods for metabolism measurements of the total water column.

Plankton Metabolism

To measure the plankton component of the community metabolism, the light-dark bottle method was employed. For this procedure, 300-ml BOD bottles were used. The dark bottles were taped to exclude light, and the tops were capped with black plastic and secured by rubber bands. The light bottles were used unmodified.

One set, consisting of two light bottles and two dark bottles, was anchored in each of the bays after the dawn sampling run. The light bottles were suspended approximately 0.5 m from the surface by cords attached to a length of PVC pipe buoyed at each end by a plastic milk bottle. The dark bottles were attached below the light bottles. The set of bottles was incubated up to 24 hours.

In addition to the light and dark bottles, two 125-ml subsamples were collected to determine the initial amount of dissolved oxygen present at each station. In all cases (light, dark, or initial) each bottle was filled with water from a single surface bucket collection made at the station.

Plankton respiration was calculated as the decrease in oxygen in the dark bottle as compared to the initial concentration of oxygen. Net pro-

ductivity was calculated as the increase in oxygen in the light bottle as compared to the initial concentration. Corrections were made to adjust for variations in the incubation time.

With the use of the 300-ml BOD bottles for plankton metabolism, fixation and acidification were done using 2.0-ml volumes of the appropriate reagents. Sample volumes of 101 ml were used for titration with 0.012 N sodium thiosulfate.

Water Depth

Water depth was measured at each station by a plumb line marked at 0.2-m intervals. For the inner discharge bay a reference stake, which represented a minimum of 50 measurements conducted in transects, was available to determine the average water depth.

Light Penetration

Secchi disk measurements were taken at all stations under all sampling regimes. Extinction coefficients from the Secchi disk readings were calculated as follows:

K = 1.7/d

where, d = depth in meters at which the Secchi disk was no longer visible (Atkins and Poole 1930). Higher values indicate greater turbidity.

Additional measurements of light extinction were made with a Montedoro-Whitney photometer in the inner discharge bay and its control bay. These measurements were converted to extinction coefficients by the following equation:

$$K = \frac{\ln(S_1/S_2)}{Z_2 - Z_1}$$

where, S_1 = percent of light transmitted at depth Z_1 ,

 S_2 = percent of light transmitted at depth Z_2 ,

 Z_1 = surface or a near surface depth, and

 $Z_2 = lower depth.$

Photometer measurements in the bays A and E were made during high tides at midday. Z_1 was always 0.2 m below the surface. The lower depth, Z_2 , was at least 0.2 m above the bottom to avoid interference from sediments resuspended by the probe. For given pairs of data between bays A and E on a given date, the lower depth, Z_2 , was always the same value to insure cross comparison between the bays on a relative basis.

Insolation

Insolation was recorded with a Weathermeasure pyroheliometer.

Wind speed was measured with a hand-held Dwyer wind meter. In the absence of an operating meter, an estimate of wind speed was made. Current Velocity

Current velocity was measured by either of two methods: 1. a glass flotation device secured to a 5-m length of cord was released, and the time for full extension of the cord was recorded, or 2. a General Oceanics flowmeter was submerged to approximately 0.5 m for 1 minute, and the counts per minute were recorded.

Salinity

Salinity was measured by use of either a Beckman induction salinometer or a Hydrolab conductivity probe with subsequent conversion to salinity. The readings were taken at approximately 0.5 m below the surface.

Temperature

Temperature was measured with either a Hydrolab temperature probe or the temperature probe of the Beckman salinometer. Temperature measurements were made at the same depth and time as the salinity measurements. Community Metabolism Calculations

Community metabolism was determined by two methods: 1. 24-hour diurnal sampling, and 2. dawn-dusk-dawn sampling. The metabolism of the 24-hour diurnal sampling method was determined using graphical analysis. The dawn-dusk-dawn metabolism value was determined through the use of equations.

Figure II-3 illustrates the graphical analysis method for diurnal metabolism with actual data from the inner control bay. To calculate the metabolism, the number of grams of oxygen per cubic meter was plotted in Fig. II-3a. Six measurements were taken per sampling period, and the averages of these measurements were plotted and connected. Using tide tables (U.S. Department of Commerce 1976-1979) and the reference stake readings, the depth was plotted in Fig. II-3b. By multiplying the number of grams of oxygen per cubic meter by the depth (meters), the uncorrected oxygen rate of change, on an area basis, was calculated and plotted in Fig. II-3f as grams of oxygen per square meter per hour (......).

The average temperatures were plotted in Fig. II-3c as well as the salinites in Fig. II-3d. The salinity values were not connected by lines due to the nonlinearity of the variation in daily salinity patterns. The salinity and temperature values were used in conjunction with the oxygen solubility in tables (Truesdale et al. 1955) to determine the 100% saturation value of oxygen for a given temperature and salinity.

11-17

Figure II-3. Example of graphical format for calculation of community metabolism from diurnal measurements in the inner discharge bay (A), October 1, 1977, and its control bay (E), October 2, 1977. Open circles represent averages.

- a) oxygen concentration, g $O_2 \cdot m^{-3}$;
- b) depth, m;
- c) temperature, °C;
- d) salinity, ‰;
- e) percent saturation of oxygen;

The measured oxygen concentration values in Fig. II-3a were converted to percent saturation values and plotted in Fig. II-3e. To correct the rate curve (Fig. II-3f) for diffusion, the plotted values in Fig. II-3e were subtracted from 100%, then divided by 100, and multiplied by the appropriate diffusion coefficient (see below). This new figure was then added to the uncorrected rate of change value in Fig. II-3f, giving the diffusion corrected oxygen rate of change curve (o---o).

The net productivity and respiration were calculated using the corrected rate of change curve. The time period from sunrise to sunset represents daytime net productivity. The area under/above the curve was measured using a digital planimeter. The negative values below zero on the rate of change curve represent negative net productivity and were added to the positive values to arrive at the final net productivity, for example:

$$(2.3 \text{ g} \cdot \text{m}^{-2} \cdot \text{d}^{-1}) + (-1.0 \text{ g} \cdot \text{m}^{-2} \cdot \text{d}^{-1}) = 1.3 \text{ g} \cdot \text{m}^{-2} \cdot \text{d}^{-1}$$
$$(+P_N) + (-P_N) = P_N \text{ final.}$$

Night respiration is that process occurring between sunset and sunrise and was measured in the same fashion as the net productivity. Although respiration was a negative value, its absolute value was recorded on subsequent tables in this report. The absolute respiration value added to the net productivity yielded the 24-hour gross productivity.

The dawn-dusk-dawn measurements were an abbreviated form of the diurnal measurements. McKellar (1975) and Smith (1976) found the dawn-duskdawn method to underestimate gross production from less than 10% to as much as 33% of a full diurnal curve analysis. This study's dawn-dusk-dawn results were not adjusted to compensate for this underestimation and thus must be taken as conservative estimates.

To determine the metabolism from the dawn-dusk-dawn method, the following equations, which yield results comparable to the graphical method, were used (see McKellar 1975).

$$P_{net} = [(O_{2dusk} - O_{2dawn}) \cdot \overline{Z} - D)]$$

where, O_2 = dissolved oxygen concentration at dawn and dusk,

 \overline{Z} = average daytime water depth, and

 $D \simeq$ daytime diffusion.

The total diffusion (D) was determined from the following relation-

$$D = K \cdot S \cdot T$$

where, K = diffusion rate coefficient (g $0_2 \cdot m^{-2} \cdot hr^{-1}$ at 100% saturation deficit) (see below),

 \overline{S} = average saturation deficit ($S_{dawn} + S_{dusk}$)/2,

S = saturation deficit (100 - PS)/100,

PS = percent saturation $(0_2/0_2 \text{ sat}) \cdot 100$,

 0_2 sat = oxygen concentration at saturation for given water

temperature and salinity, and

T = time in hours between dawn and dusk measurements.

Nighttime respiration (R) was calculated in an identical manner for oxygen changes between dusk and dawn.

Diffusion Rate Coefficients

Diffusion coefficients were measured using the methods of Copeland and Duffer (1964) and Smith (1976). A floating dome was placed on the surface and filled with nitrogen gas. An oxygen probe placed in the dome recorded the rate of reaeration. Current and wind speed, depth, water

temperature, and air temperature in the dome were also recorded. Diffusion measurements were made in each bay and an average coefficient was calculated. The inner discharge bay coefficient, 0.35 g $0_2 \cdot m^{-2} \cdot hr^{-1}$ at 100% saturation deficit, was from Smith's (1976) preoperational data (n = 5). The control bay coefficient, 0.48 g $0_2 \cdot m^{-2} \cdot hr^{-1}$ at 100% saturation deficit, was determined from measurements (n = 2) in the fall of 1977 in the postoperational study.

P/R Ratios

P/R ratios were calculated using the ratio of gross productivity (P_G) to 2 times nighttime respiration (2.R). This method assumes that night respiration equals daytime respiration. A P/R ratio >1.0 indicates an autotrophic community, while a P/R ratio <1.0 indicates heterotrophy. Ecological Efficiency

Ecological efficiency was calculated as the ratio of gross productivity (converted to Calories [Cal], 1 g 0_2 = 4.0 Cal), to total insolation, multiplied by 100 to give percentage value.

Comparability of Plankton and System Metabolism Data

Estuarine system metabolism may be considered to consist of two dominant parts—benthos metabolism and plankton metabolism. In this study, system metabolism parameters (gross productivity, net productivity, and respiration) are measured by the open water method in which the ecosystem receives very little disturbance in the measurement process. Plankton metabolism is estimated in an altered environment, i.e., a 300-ml bottle over a 12- or 24-hour time period. In this bottle, a circulationadapted plankton community is cut off from the effect of circulation and thus gross and net productivity may be lowered compared to in situ populations. In addition, surface area to volume ratio is greatly increased in

the bottles and thus respiration by attached microbial communites may be higher at long incubation times. Thus, there is considerable reason for doubt concerning the comparability of bottle and open water metabolism measurements and the use of the difference between the two for reporting benthos metabolism. However, considerable evidence has been gained in obvious plankton-dominated systems (deep, with little light penetration to the bottom, e.g., see section on bays OB and C in this report) that the measurements are comparable, and can be used for making tenative conclusions about relative importance of plankton and benthos productivity in clearer or more shallow systems. Comparisons such as these are made in this section and in the rest of the report and must be judged conservatively.

Results

1980 Data

A summary of the 1980 data is presented in Appendix A. The data were analyzed using a two-tailed t-test. Seasons for the inner discharge bay and its control bay are defined as follows:

> Winter: January-March Spring: April-June Summer: July-September Fall: October-December.

These designations are consistent with those used by Smith (1976) for the preoperational study but different from those in other sections of this report.

Table II-1 presents the outage data for Crystal River Units 1, 2, and 3. Unit 3 was off line from February 26 to August 10, 1980. Additional

1980 Sampling Date	ΔT, °C	Unit l	Unit 2	Unit 3
1/04*	6.8	Х	X	X
1/05*	5.4	Х	х	Out
1/18_19	5.5	x	х	х
2/01_02	9.6	X	Х	X
2/22-23	5.7	Х	Out	х
3/08-09	1.3	х	Х	Out
3/21-22	3.0	Out	x	Out
4/04_05*	2.3	Out	Х	Out
4/18-19	2.8	Х	x	Out
5/03-04	2.5	Х	Х	Out
5/16-17	2.9	х	х	Out
5/31-6/01	3.1	Out	Х	Out
6/17—18	3.1	Х	х	Out
6/30_7/01*	2.1	Out	Х	Out
7/17-18	3.3	х	X	Out
8/03-04	2.7	Х	х	Out
8/16-17	4.8	х	x	x
8/29	4.8	Х	Х	Out
8/30	5.6	x	х	х
9/12	4.1	Х	х	Out
9/13	5.9	х	х	х
9/26-27*	5.4	Х	х	х
10/15-16	7.3	х	Out	х
10/31-11/01	7.7	Out	х	х
11/14-15	6.3	Out	х	х
11/29-30	8.9	Х	х	х
12/15-17	7.9	Х	X	х

Table II-1. Crystal River power plant units service record (X = operating unit; Out = unit not operating) and the differences in temperature (Δ T) between the inner discharge bay (A) and its control bay (E).

*Indicates diurnal sampling period.

1-2-day outages of Unit 3 during the rest of the year resulted in a total outage time of 6 months, or 50% of the year. The lowest temperature differences (Δ T) between the inner discharge bay and its control bay occurred when Unit 3 was off line. In addition, there is clearly a seasonal pattern evident for Δ T with higher values in the colder months and lower values during the warmer months. This pattern of plant operation is evident in spite of Unit 3 outages.

Mean seasonal temperatures are presented in Table II-2 and Fig. II-4. The discharge bay temperatures were significantly greater in all seasons, with an average temperature difference of 4.8°C (Table II-3) for the year. Temperature differences were lowest in the spring and summer when Unit 3 was off line.

Salinity was significantly greater in the discharge bay for all seasons (Table II-2, Fig. II-5). The higher salinities in the discharge bay were in part due to the release of the high-salinity offshore water used for cooling purposes. The control bay also received fresh water flows from the Crystal River, which empties into the Gulf approximately 5 km south of the power plant site.

Extinction coefficients (from Secchi disk readings) are reported in Table II-2. The inner discharge bay was generally found to have greater turbidities than the control bay. The data for both bays though is biased towards high extinction coefficients because of the shallowness of the bays. It was usually necessary to have a high tide with moderately turbid waters to get extinction of the Secchi disk in these bays.

To avoid this bias, a series of photometer readings were made throughout the year in the inner discharge and control bays. Extinction coefficients derived from the photometer readings were also significantly

Season	Temperature, °C	Salinity, %。	Extinction Coefficient, m ⁻¹
Winter			
Discharge Control	21.1 <u>+</u> 0.7(12)* 15.9 <u>+</u> 1.1(12)*	$26.5 \pm 0.4(12)*$ 23.0 $\pm 0.9(12)*$	2.25 <u>+</u> 0.25(9) 1.70 <u>+</u> 0.26(8)
Spring			
Discharge Control	28.0 <u>+</u> 0.9(12)* 25.2 <u>+</u> 0.9(12)*	23.5 + 0.5(12)* 20.3 + 0.5(12)*	2.42 + 0.19(10)* 1.48 + 0.06(12)*
Summer			
Discharge Control	33.6 + 0.4(12)* 29.7 + 0.3(12)*	23.8 <u>+</u> 1.0(12)* 20.0 <u>+</u> 1.0(12)*	$1.84 \pm 0.10(12) \\ 1.54 \pm 0.19(12)$
Fall			
Discharge Control	28.4 + 1.3(12)* 21.2 + 1.6(12)*	$27.0 \pm 0.4(12)*$ 24.6 \pm 0.3(12)*	1.84 <u>+</u> 0.23(8)* 1.22 <u>+</u> 0.08(8)*

Table II-2. Results of statistical t-tests between the inner discharge bay (A) and its control bay (E): 1980 seasonal averages for temperature (°C), salinity (%.), and extinction coefficient (m⁻¹). The standard error is listed after the value; the number of observations follows in parentheses.

*Means for control and discharge are significant at the 95% confidence level (two-sample t-tests).

Figure II-4. Comparison of 1980 mean seasonal temperatures for the inner discharge bay (A) and its control bay (E). Bars represent <u>+</u> one standard error.

Season	Control Bay (E), °C	Discharge Bay (A), °C	ΔT, °C
Winter	15.9	21.1	5.2
Spring	25.2	28.0	2.8
Summer	29.7	33.6	3.9
Fall	21.2	28.4	7.2
Mean			4.8
Standard Error			0.9

Table II-3. Differences in mean temperature (ΔT) between the inner discharge bay (A) and its control bay (E) by seasons for 1980.

Figure II-5. Mean seasonal salinities for the inner discharge bay (A) and its control bay (E) for 1980. Bars represent <u>+</u> one standard error.

higher in the discharge bay compared to its control bay (95% confidence level) (Table II-4).

System productivity data for 1980 (Table II-5, Figs. II-6 and II-7) indicated significantly lower productivity in the discharge bay for all seasons. System gross productivity (P_G) peaked in the spring in the inner discharge bay and in the summer in the control bay.

Plankton productivity (Table II-6, Figs. II-8 and II-9) followed the same pattern as the system productivity. The discharge bay plankton productivity peaked in the spring while the control bay plankton productivity peaked in the summer. During the spring quarter, plankton gross productivity was significantly higher in the discharge bay, while during the summer quarter the intake bay's gross productivity was significantly higher.

As in the past 3 years of this study, plankton productivity was the dominant factor in the total system productivity of the inner discharge bay accounting for approximately 84% of the total system productivity (Table II-7). In sharp contrast to the discharge bay, plankton productivity in the control bay averaged only 25% of the total system productivity.

Ecological efficiency in the inner discharge bay was significantly lower than the control bay for all seasons except winter (Table II-8).

The P/R ratios (Table II-8) were consistently higher in the discharge bay compared to its control, with significant differences (P = 0.10) measured during the spring and fall. The range of the P/R ratios was quite large, especially in the inner discharge bay. This was a result of the low respiration values found in the discharge bay (Table II-5).

Light Extinction Coefficient, m ⁻¹		
Discharge Bay (A)	Control Bay (E)	
1.21	1.00	
0.29	0.17	
0.84-2.11	0.81-1.34	
18	17	
	Light Extinction (Discharge Bay (A) 1.21 0.29 0.84-2.11 18	

Table II-4. Photometer-derived extinction coefficients for the inner discharge bay (A) and its control (E) for 1980.

Table II-5. Results of statistical t-tests between the inner discharge bay (A) and its control bay (E): 1980 seasonal averages for total system gross productivity ($P_G = P_N + R$), net productivity (P_N), and night respiration (R). The standard error is listed after the value; the number of observations follows in parentheses.

	₽ _G ,	P _N ,	R,
Season	g 0 ₂ ·m ⁻² ·d ⁻¹	g 0 ₂ ·m ⁻² ·d ⁻¹	g 02·m ⁻² ·d ⁻¹
Vinter			
Discharge Control	1.11 <u>+</u> 0.23(12)* 2.17 <u>+</u> 0.34(12)*	0.71 <u>+</u> 0.08(12)† 1.14 <u>+</u> 0.20(12)†	0.40 <u>+</u> 0.17(12)* 1.03 <u>+</u> 0.17(12)*
Spring			
Discharge Control	2.32 + 0.25(12)* 4.80 + 0.62(12)*	1.48 + 0.17(12)* 2.74 + 0.35(12)*	0.84 + 0.13(12)* 2.06 + 0.33(12)*
Summer			
Discharge Control	1.64 <u>+</u> 0.26(12)* 7.67 <u>+</u> 0.68(12)*	0.81 <u>+</u> 0.18(12)* 4.04 <u>+</u> 0.39(12)*	0.83 <u>+</u> 0.14(12)* 3.64 <u>+</u> 0.34(12)*
Fall			
Discharge Control	$0.70 \pm 0.23(12)*$ $6.04 \pm 0.82(12)*$	$0.51 \pm 0.15(12)*$ $3.47 \pm 0.47(12)*$	$0.19 \pm 0.11(12)^{3}$ 2.57 $\pm 0.42(12)^{3}$

level (two-sample t-tests).
'Means for control and discharge are significant at the 90% confidence
level (two-sample t-tests).

Figure II-6. Mean seasonal system gross productivity of the inner discharge bay (A) and its control bay (E) for 1980. Bars represent <u>+</u> one standard error.

Figure II-7. Mean seasonal system net productivity and system respiration of the inner discharge bay (A) and its control bay (E) for 1980. Bars represent <u>+</u> one standard error.

Table II-6. Results of statistical t-tests between the inner discharge bay (A) and its control bay (E): 1980 seasonal averages for plankton gross productivity ($P_G = P_N + R$), plankton net productivity (P_N), and plankton respiration (R). The standard error is listed after the value; the number of observations follows in parentheses.

Season	Plankton P _G , g O ₂ ·m ⁻² ·d ⁻¹	Plankton P _N , g O ₂ ·m ⁻² ·d ⁻¹	Plankton R, g O ₂ ·m ⁻² ·d ⁻¹
linter			
Discharge Control	0.30 <u>+</u> 0.08(9) 0.55 <u>+</u> 0.16(10)	0.18 ± 0.07(9) 0.34 ± 0.13(10)	$0.13 \pm 0.04(8)$ $0.27 \pm 0.09(8)$
Spring			
Discharge Control	$2.02 \pm 0.35(12)*$ $1.10 \pm 0.13(12)*$	$\begin{array}{r} 1.89 \\ + \\ 0.84 \\ + \\ 0.12(12) \\ \end{array} $	$\begin{array}{r} 0.13 \pm 0.04(12) \\ 0.26 \pm 0.06(12) \\ \end{array}$
Summer			
Discharge Control	$1.57 \pm 0.30(12)*$ 2.45 $\pm 0.23(12)*$	$1.33 \pm 0.32(12) \\ 1.90 \pm 0.21(12)$	0.24 <u>+</u> 0.04(12)* 0.55 <u>+</u> 0.06(12)*
all			
Discharge Control	$\begin{array}{r} 0.89 \ \pm \ 0.10(12) \\ 1.30 \ \pm \ 0.30(12) \end{array}$	$\begin{array}{r} 0.59 \pm 0.08(12) \\ 0.94 \pm 0.22(12) \end{array}$	$\begin{array}{r} 0.30 + 0.06(12) \\ 0.37 + 0.11(12) \end{array}$

*Means for control and discharge are significant at the 95% confidence level (two-sample t-tests). †Means for control and discharge are significant at the 90% confidence level (two-sample t-tests).

SEASON

Figure II-8.

Mean seasonal plankton gross productivity of the inner discharge bay (A) and its control bay (E) for 1980. Bars represent <u>+</u> one standard error.

Figure II-9. Mean seasonal plankton net productivity and plankton respiration of the inner discharge bay (A) and its control bay (E) for 1980. Bars represent + one standard error.

Control (E)			Inner Discharge Bay (A)			
Season	Total P_G , g $O_2 \cdot m^{-2} \cdot d^{-1}$	Plankton P _G , g O ₂ ·m ⁻² ·d ⁻¹	% Plankton P _G	Total P_G , g $O_2 \cdot m^{-2} \cdot d^{-1}$	Plankton P_G , g $O_2 \cdot m^{-2} \cdot d^{-1}$	% Plankton P _G
Winter	2.17	0.55	25.3	1.11	0.30	27.0
Spring	4.80	1.10	22.9	2.32	2.02	87.1
Summer	7.67	2.45	31.9	1.64	1.57	95.7
Fall	6.04	1.30	21.5	0.70	0.89	127.1
Mean			25.4			84.2
Standard	Deviation		4.6			41.8

Table II-7. Percent of the seasonal average total system gross productivity (P_G) due to plankton gross productivity (P_G) in the control bay (E) and the inner discharge bay (A) for 1980.

Season	Ecological Efficiency	Range	P/R Ratio	Range
Winter				
Discharge Control	$\begin{array}{c} 0.21 + 0.06(12) \\ 0.32 + 0.06(12) \end{array}$	0.04_0.66 0.11_0.69	$\begin{array}{r} 1.95 \pm 0.58(8) \\ 1.20 \pm 0.20(12) \end{array}$	0.74—5.83 0.52—3.19
Spring				
Discharge Control	$\begin{array}{r} 0.21 + 0.02(12) \\ 0.44 + 0.05(12) \\ \end{array}$	0.12—0.37 0.11—0.68	1.59 <u>+</u> 0.19(12) 1.19 <u>+</u> 0.11(11)	t 0.70-2.73 t 0.76-2.12
Summer				
Discharge Control	$\begin{array}{r} 0.16 + 0.02(12) \\ 0.72 + 0.05(12) \\ \end{array}$	0.07—0.30 0.42—0.96	$1.20 + 0.19(12) \\ 1.08 + 0.06(12)$	0.59 <u>3.09</u> 0.85 <u>1.66</u>
Fall				
Discharge Control	0.09 + 0.03(11)* 0.90 + 0.11(11)*	-0.04-0.32 0.24-1.60	7.76 + 5.50(5)1 1.58 + 0.36(12)	1.02-29.50 † 0.80-5.34

Table II-8. Results of statistical t-tests for evaluation of mean ecological efficiencies and P/R ratios ($P_G/2R$) between the inner discharge bay (A) and its control bay (E) for 1980. Standard error follows the value; number of observations in parentheses.

level (two-sample t-tests).

*Means for control and discharge are significant at the 90% confidence
level (two-sample t-tests).

1973 Preoperational and 1980 Postoperational Data Comparisons

Prior to the operation of Unit 3, a study of the system metabolism of the inner discharge bay and a control station at Fort Island was conducted by Smith (1976). A record of Smith's data can be found in Appendix II-B of Caldwell et al. (1979). The 1973 preoperational data is grouped data from 1972 to 1974. The productivity measurements reflected the energy flows and structure of the inner discharge bay at a time when it had been receiving thermal effluent for several years from two electrical generating units.

In spring 1977 when this postoperational study began, the control station at Fort Island was dropped for logistics reasons. Diurnal measurements were made in the inner control bay and at the Fort Island station to compare productivities (Odum et al. 1978). The two sites were found to be similar in productivity, and the inner control bay was chosen as the control site for the inner discharge bay. Due to this switch in control stations, comparisons between the preoperational and postoperational control station data were not made.

Water temperatures in the inner discharge bay in 1980 were significantly different from those in 1973 in all seasons except winter (Table II-9, Fig. II-10). During spring 1980, when Unit 3 was off line, the temperatures were significantly lower. In summer and fall 1980, when Unit 3 was on line for all or part of those seasons, temperatures were significantly higher than those in 1973. Salinities (Table II-9, Fig. II-10) were significantly lower in spring and summer 1980. In both 1973 and 1980 though, the mean annual salinity was approximately 25.5‰.

	Inner Discharge Bay (A)			
Season	Temperature, °C	Salinity, %。		
Winter				
1973 1980	20.6 + 2.8(3) 21.1 + 0.7(12)	$\begin{array}{r} 23.8 + 3.8(3) \\ 26.5 + 0.4(12) \end{array}$		
Spring				
1973 1980	31.8 <u>+</u> 0.5(14)* 28.0 <u>+</u> 0.9(12)*	25.9 + 0.6(14)* 23.5 + 0.5(12)*		
Summer				
1973 1980	32.3 <u>+</u> 0.4(10)* 33.6 <u>+</u> 0.4(12)*	26.6 + 0.6(10)* 23.8 + 1.0(12)*		
Fall				
1973 1980	22.4 + 0.9(4)* $28.4 + 1.3(12)*$	27.1 + 0.2(4) 27.0 + 0.4(12)		

Table II-9. Results of statistical t-test for comparison of temperature (°C) and salinity (%) in the inner discharge bay (A) between the 1973 (preoperational) and 1980. Standard error follows the value; number of observations in parentheses.

*Means significant at 95% confidence level.

Figure II-10. Comparison of the mean seasonal temperature and salinity of the inner discharge bay (A) in 1973 and 1980. Bars represent <u>+</u> one standard error.

Total system productivity data are presented in Table II-10 and Figs. II-11 and II-12. System gross productivity (P_G) was significantly lower during 1980 for all seasons. The mean annual system gross productivity in 1980 was approximately 30% of that measured in 1973. In 1980, system net productivity (P_N) was approximately 50% of that measured in 1973 while system respiration (R) was approximately 27% of that found in 1973.

Plankton gross productivities (P_G) did not differ significantly between 1973 and 1980 (Table II-11 and Fig. II-13). Plankton respiration in spring 1980 was significantly less than that in 1973 although only two measurements were made in 1973.

Preoperational and Postoperational Trends: 1973, 1977-1980

Temperatures exhibited a cyclical pattern, which peaked in the summer (Fig. II-14). The highest seasonal temperature was in summer 1977, the only summer in which Unit 3 was on line. All matched seasonal dischargeintake temperature pairs were significantly different except for winter 1978, which included only three measurements. Table II-12 presents a seasonal comparison of Δ Ts between the discharge and control bays. Except for the winter 1973 data, the higher Δ Ts were found in seasons during which Unit 3 was operational all or part of the time.

Postoperational salinity fluctuations (Fig. II-15) in the control and discharge bays tracked each other closely. The discharge bay averaged approximately 3% greater than the control bay (Table II-13). This was due in part to the discharge of the higher salinity offshore water used for cooling. Preoperational salinities did not demonstrate this close relationship, possibly because Fort Island, the preoperational control

Table II-10. Results of statistical t-tests for comparison of total system gross productivity ($P_G = P_N + R$), net productivity (P_N), and night respiration (R) in the inner discharge bay (A) between 1973 (preoperational) and 1980. Standard error follows the value; number of observations follows in parentheses.

		Inner Discharge Bay (A)				
	P _G ,	P _N ,	R,			
Season	g 0 ₂ •m ⁻² •d ⁻¹	g 02°m ⁻² .d ⁻¹	g 02·m ⁻² ·d ⁻¹			
Winter						
1973 1980	$3.25 \pm 1.17(3)*$ $1.11 \pm 0.23(12)*$	1.40 <u>+</u> 0.40(3)* 0.71 <u>+</u> 0.08(12)*	1.85 + 0.93(3)* 0.40 + 0.17(12)*			
Spring						
1973 1980	4.05 <u>+</u> 0.52(14)* 2.32 <u>+</u> 0.25(12)*	2.13 <u>+</u> 0.31(14)† 1.48 <u>+</u> 0.17(12)†	1.92 <u>+</u> 0.26(14)* 0.84 <u>+</u> 0.13(12)*			
Summer						
1973 1980	4.40 <u>+</u> 0.85(10)* 1.64 <u>+</u> 0.26(12)*	2.10 ± 0.50(10)* 0.81 ± 0.18(12)*	2.30 <u>+</u> 0.44(10)* 0.83 <u>+</u> 0.14(12)*			
Fall						
1973 1980	$3.27 \pm 0.28(3)*$ $0.70 \pm 0.23(12)*$	$1.20 \pm 0.06(3)*$ $0.51 \pm 0.15(12)*$	2.07 <u>+</u> 0.24(3)* 0.19 <u>+</u> 0.11(12)*			

*Means significant at 95% confidence level. †Means significant at 90% confidence level.

Figure II-11. Mean seasonal system gross productivity of the inner discharge bay (A) in 1973 and 1980. Bars represent <u>+</u> one standard error.

Figure II-12. Mean seasonal system net productivity and system respiration of the inner discharge bay (A) in 1973 and 1980. Bars represent <u>+</u> one standard error.

Table II-11. Results of statistical t-tests for comparison of plankton gross productivity ($P_G = P_N + R$), plankton net productivity (P_N), and plankton respiration (R) in the inner discharge bay (A) between 1973 (preoperational) and 1980. Standard error follows the value; number of observations follows in parentheses.

		Inner Discharge Bay (A)				
Season	Plankton ^P G, g O ₂ ·m ⁻² ·d ⁻¹	Plankton ^P N, g O ₂ ·m ⁻² ·d ⁻¹	Plankton R, g O ₂ ·m ⁻² ·d ⁻¹			
Winter						
1973 1980	0.30 + 0.08(9)	—No data for 1973—— 0.18 <u>+</u> 0.07(9)	0.13 + 0.04(8)			
Spring						
1973 1980	$3.15 \pm 1.55(2) \\ 2.02 \pm 0.35(12)$	$\frac{1.85 + 0.65(2)}{1.89 + 0.33(12)}$	1.30 + 0.90(2)* 0.13 + 0.04(12)*			
Summer						
1973 1980	$\begin{array}{r} 0.97 + 0.20(3) \\ 1.57 + 0.30(12) \end{array}$	$\begin{array}{r} 0.70 + 0.12(3) \\ 1.33 + 0.32(12) \\ \end{array}$	$\begin{array}{r} 0.27 + 0.09(3) \\ 0.24 + 0.04(12) \end{array}$			
Fall						
1973 1980	$\begin{array}{r} 0.83 \pm 0.08(4) \\ 0.89 \pm 0.10(12) \end{array}$	$\begin{array}{r} 0.58 \pm 0.05(4) \\ 0.59 \pm 0.08(12) \end{array}$	$\begin{array}{r} 0.25 \pm 0.05(4) \\ 0.30 \pm 0.06(12) \end{array}$			

*Means significant at 95% confidence level. †Means significant at 90% confidence level.

Figure II-13. Mean seasonal plankton gross productivity, net productivity, and respiration of the inner discharge bay (A) in 1973 and 1980. Bars represent <u>+</u> one standard error.

Figure II-14. Mean seasonal temperatures of the inner discharge bay (A) and its control bay (E) for 1973, 1977-1980. Bars represent <u>+</u> one standard error.

			∆T, °C		
Season	1973	1977	1978	1979	1980
Winter	(7.3)	No data	3.8*	4.5*	5.2*
Spring	3.2	No data	3.2	3.8	2.8
Summer	2.8	4.9*	3.0	3.6	3.9*
Fall	3.3	6.3*	5.7*	5.6*	7.2*
Mean	4.1	5.6	3.9	4.4	4.8
Standard deviation	2.1	1.0	1.2	0.9	1.9

Table II-12. Seasonal ∆T's between inner discharge bay (A) and its control bay (E) for 1973, 1977-1980.

*Unit 3 operational for all or part of that season.

Figure II-15. Mean seasonal salinities of the inner discharge bay (A) and its control bay (E) for 1973, 1977-1980. Bars represent <u>+</u> one standard error.

.

	Year			
	1973	1978	1979	1980
Control				
Mean Standard deviation	16 . 9	21.1	24.0	22.0
Discharge	2,	5.0		
Mean Standard	25.8	24.6	27.2	25.2
deviation	1.5	2.9	1.2	1.8

Table II-13. Mean annual salinity (%.) for the inner discharge bay (A) and its control bay (E) for 1973, 1978-1980.

site, was located near the mouth of the Crystal River where it was influenced by the freshwater discharge.

System gross productivity in the control bay followed a seasonal pattern that peaked in the summer (Fig. II-16). In the discharge bay, the system gross productivity appeared to vary with the operation of Unit 3. In 1977, when Unit 3 was on line for most of the year, gross productivity was uniformly low in the inner discharge bay. In spring 1978, when Unit 3 was off line, gross productivity rebounded to levels measured in the preoperational study. Previous to 1980, it appeared that if Unit 3 was off line during spring and summer that the full productivities were not depressed to the low levels recorded in 1977. In 1980 though, when Unit 3 came on line in the fall, gross productivity dropped to the levels measured in 1977. The 1980 fall temperatures (Fig. II-14) were greater and the salinities (Fig. II-15) were slightly less than those recorded in 1977—1979 although none of the differences were statistically significant (P = 0.05).

System net productivity and respiration (Fig. II-17) exhibited the same patterns: the discharge bay appeared to vary with the operation of Unit 3 while the control bay demonstrated a strong seasonal pattern.

To investigate the relationship between discharge and control productivities, the percent of discharge productivity relative to the control productivity (control productivity = 100%) was calculated for each year (Table II-14). The relative inner discharge bay productivities of 1978 and 1979 were nearly identical: 46.5% and 46.2%, respectively. In 1980 the relative discharge productivity dropped to 33.1%. During the same period, 1977—1980, the control bay system gross productivity remained statistically constant except for spring 1978, which was significantly

Figure II-16. Mean seasonal system gross productivity of the inner discharge bay (A) and its control bay (E) for 1973, 1977-1980. Bars represent <u>+</u> one standard error.

Figure II-17. Mean seasonal system net productivity and respiration of the inner discharge bay (A) and its control bay (E) for 1973, 1977-1980. Bars represent <u>+</u> one standard error.
Table II-14. The seasonal average percent system gross productivity of the inner discharge bay (A) relative to the system gross productivity of its control bay (E) for 1973, 1977—1980. Number in parentheses indicates number of observations.

Season	% Total Gross Productivity						
	1973	1977	1978	1979	1980		
Winter	97.0(2)	No data	37.6(8)	36.9(8)	51.3(12)		
Spring	45.5(7)	No data	61.3(11)	41.7(12)	48.3(12)		
Summer	55.3(6)	8.3(7)	28.2(10)	35.3(10)	21.4(12)		
Fall	42.4(4)	12.1(11)	58.8(11)	70.8(12)	11.5(12)		
Mean	60.0	10.2	46.5	46.2	33.1		
Standard deviation	25.2	2.7	16.2	16.6	19.7		

higher than spring 1979 and 1980 (Fig. II-16). Whether these postoperational relative productivities can be directly compared to the preoperational data (from Table II-14 percent relative discharge productivity = 60.0) is difficult to ascertain given the small sample sizes in some seasons and the use of a different control station. The relative productivities of summer and fall 1977 represented the only data with Unit 3 operating in the summer and are markedly lower than any other relative percent productivities.

The pattern of postoperational plankton gross productivity was very similar to that of the system gross productivity (Fig. II-18). The control bay plankton productivity had a seasonal pattern that peaked in the summer. There was also some seasonal pattern found in the inner discharge bay with spring and summer productivities highest with similar values. The preoperational plankton gross productivity indicates a spring peak and this was seen again in 1978 and 1980 data. Again, the depressed levels of productivity were evident in the inner discharge bay in 1977. The same trends shown by the plankton gross productivities were found in the plankton net productivities (Fig. II-19). The plankton respiration (Fig. II-19) did not exhibit as pronounced a seasonal variation as did the plankton net productivity.

Table II-15 summarizes seasonal and annual means of percent plankton gross productivity of the inner discharge bay relative to its control bay. Preoperational data (1973) indicated higher plankton gross productivity in the discharge bay. During Unit 3's first year of operation, this relative productivity was severely reduced relative to the control bay; while during the following 3 years plankton productivities were similar between the discharge and control bays. This trend may be indicative of greater

Figure II-18. Mean seasonal plankton gross productivity of the inner discharge bay (A) and its control bay (E) for 1973, 1977-1980. Bars represent + one standard error.

Figure II-19. Mean seasonal plankton net productivity and respiration of the inner discharge bay (A) and its control bay (E) for 1973, 1977-1980. Bars represent <u>+</u> one standard error.

Table II-15. The seasonal average percent plankton gross productivity of the inner discharge bay (A) relative to the plankton gross productivity of its control bay (E) for 1973, 1977-1980. Number in parentheses indicates number of observations.

	% Plankton Gross Productivity						
Season	1973	1977	1978	1979	1980		
Winter	No data	No data	111.1(6)	128.9(9)	54.5(12)		
Spring	131.2(2)	No data	124.0(12)	100.5(11)	183.0(12)		
Summer	No data	36.3(5)	81.5(10)	56.6(9)	64.2(12)		
Fall	184.4(4)	82.1(10)	90.3(11)	118.5(10)	68.5(12)		
Mean	157.8	59.2	101.7	101.1	92.6		
Standard deviation	37.6	32.4	19.4	31.9	60.6		

thermal loading during 1977 or to selection of plankton populations adapted to the new, more variable thermal regime.

The percent of the system gross productivity ($P_{\rm G}$) produced by the plankton is presented in Table II-16. Assuming the comparable nature of these measurements as discussed earlier, it appears that the system productivity in the inner discharge bay was plankton dominated in the postoperational years. In 1977, when Unit 3 was operational for the year, the system gross productivity was 100% plankton productivity. In 1978—1980 when Unit 3 was operational only 50—60% of the year, benthos productivity contributed to the system metabolism of the inner discharge bay. It is interesting to note that since 1978 the relative amount of plankton productivity in the inner discharge bay has been increasing. The question arises whether a plankton-dominated system can be as productive as a benthos-dominated system. In 1977 and fall 1980, when plankton accounted for all the system productivity, the lowest levels of system gross productivity were measured.

The postoperational control is a benthos-dominated system (Table II-16). The relative amount of plankton gross productivity has remained fairly constant throughout this study.

The ecological efficiency (Fig. II-20) of the inner discharge bay has been significantly less than that of its control bay for all seasons except winter 1980. In 1980 the ecological efficiencies of the inner discharge bay follow a general downward trend throughout the year. Since this trend began near the time of the start up of Unit 3 in August, this lowered efficiency may be directly related to plant operation.

Table II-16. Plankton gross productivity as a percentage of total gross productivity for the inner discharge bay (A) and its control bay (E) for preoperational and postoperational years.

	Control			Discharge						
Season	1973	1977	1978	1979	1980	1973	1977	1978	1979	1980
Winter	No data		25.7	24.1	25.3	No data	L	75.9	82.6	27.0
Spring	26.7		25.5	35.9	22.9	80.8		51.5	86.6	87.1
Summer	No data	24.0	25.9	58.2	31.9	22.7	104.9	75.4	93.0	95.7
Fall	5.8	15.8	25.3	20.2	21.5	24.2	105.3	38.8	33.8	129.0
Mean	16.2	19.9	25.6	34.6	25.4	42.3	105.1	60.4	74.0	84.7
Standard deviation	14.8	5.8	0.3	17.1	4.6	32.6	0.3	18.4	27.1	42.5

Figure II-20. Mean seasonal ecological efficiencies of the inner discharge bay (A) and its control bay (E) for 1973, 1977-1980. Bars represent <u>+</u> one standard error.

Discussion

When an ecosystem is disturbed an initial lowering of productivity is expected (Odum et al. 1978; Caldwell et al. 1979). This is followed by an increasing productivity as the ecosystem adapts to the disturbance. When Unit 3 went on line in 1977, productivity in the inner discharge bay dropped to very low levels. In 1978, Unit 3 was off line more than 50% of the year and productivity in the inner discharge bay rebounded to levels measured in the preoperational study. This pattern was repeated in 1979. In 1980, Unit 3 was again off line 50% of the year, predominately in the spring and summer. Unlike 1978 and 1979, the levels of productivity declined from spring through fall. The fall 1980 productivity was similar to that measured in 1977.

The independent variables measured in this study gave no obvious insights into this decline. Given the theory of ecosystem adaptation and the maximization of power (Caldwell et al. 1979), one might expect that the productivity of the inner discharge bay would have increased or remained at the same level in 1980. Apparently either other independent factors, such as nutrients, may be affecting the inner discharge bay, causing a decline in productivity; or the question of ecosystem adaptation and resiliency must be examined. It is possible that the cumulative effects of an interaction of temperature, turbidity, and other unknown factors may have exceeded the capabilities of the discharge bay system to adapt to even the varying operation of Unit 3 during the past 3 years.

Summary

The inner discharge bay system gross productivity in 1980 approximated
33% of the control bay system gross productivity. This was a decline

from the 46% relative system gross productivity measured in 1978 and 1979.

- Plankton gross productivity accounted for approximately 87% of the discharge system gross productivity and 26% of the control system gross productivity.
- Unit 3 was off line 50% of the year. This was reflected in lower spring and summer temperatures in the discharge bay.
- 4. System gross productivity, system net productivity, and ecological efficiencies all exhibited a decline from spring to fall in 1980. There were no substantial changes in the independent variables such as salinity and temperature to explain this decline.

CHAPTER 4

COMMUNITY METABOLISM OF THE OUTER DISCHARGE BAY (B) AND ITS CONTROL BAY (D)

Arthur M. Watson

Introduction

The results of the 1980 community metabolism measurements for the thermally affected outer discharge bay (B) and its control bay (D) (see Fig. II-2) are presented in this section. McKellar (1975) conducted a study (during 1972-1973) to determine the effects of thermal effluent on the outer discharge bay ecosystem. At that time it was discovered that although the bays are of similar depth, the outer discharge bay was plankton dominated while its control bay was dominated by benthic macrophytes. Results from 1980 measurements are compared with McKellar's (1975) preoperational study and with the 1977-1979 postoperational study (Odum et al. 1978; Caldwell et al. 1979, 1980).

Study Site

The outer discharge bay is adjacent to and due west of the inner discharge bay (A). It is bordered on the seaward and landward sides by oyster bars that run north and south. The outer control bay is located on the intake side of the canal and is morphologically similar to the outer discharge bay, with oyster bars lining the landward (eastern) side and a sandbar lining the seaward (western) side.

Methods

The methods and materials that were used in determining the community metabolism for the outer discharge bay and the outer control bay were the same as those used for the inner discharge bay and its control bay. These methods and necessary definitions are presented in chapter 3. The diffusion coefficient (K) used for the outer discharge and control bays, $0.35 \text{ g} \ 0_2 \cdot \text{m}^{-2} \cdot \text{hr}^{-1}$, at 100% saturation deficit, was from McKellar's (1975) preoperational study (n = 5).

Results

Bimonthly data collected during 1980 are summarized in Appendix B. Seasons for the outer discharge bay and its control bay are defined as follows:

> Spring: February—April Summer: May—July Fall: August—October Winter: November—January.

These season designations are consistent with those used by McKellar (1975) in his preoperational study. Note that they differ from those used for the inner bays in chapter 3.

Temperature, Salinity, and Light Extinction for 1980

Mean seasonal water temperatures for the outer discharge bay were all significantly higher than those of the control bay (Table II-17 and Fig. II-21). Seasonal temperature differences (Δ T) ranged from 6.2°C in the winter to 1.8°C in the summer.

Mean seasonal salinities were not significantly different for the outer discharge and control bays except during the winter (Table II-17 and

Temperature, °C	Salinity, %。	Extinction Coefficient, m ⁻¹	
21.4 <u>+</u> 0.7(12)* 18.3 <u>+</u> 1.1(12)*	$24.8 \pm 0.5(12) \\ 24.1 \pm 0.5(12)$	$\begin{array}{r} 1.75 \pm 0.16(12) \\ 1.89 \pm 0.21(12) \end{array}$	
29.6 <u>+</u> 0.6(12)* 27.8 <u>+</u> 0.7(12)*	21.1 + 0.7(12) 22.5 + 0.4(12)	$2.18 \pm 0.16(12) \\ 2.30 \pm 0.15(12)$	
32.6 <u>+</u> 0.5(12)* 29.0 <u>+</u> 0.6(12)*	$25.5 \pm 1.1(12) \\ 24.7 \pm 0.9(12)$	$\frac{1.60 + 0.09(12)}{1.31 + 0.13(12)}$	
23.2 <u>+</u> 1.1(12)* 17.0 <u>+</u> 1.0(12)*	26.7 + 0.3(12)† 25.9 + 0.3(12)†	$\begin{array}{r} 1.67 + 0.26(12) \\ 1.19 + 0.09(12) \end{array}$	
	Temperature, °C 21.4 $\pm 0.7(12)*$ 18.3 $\pm 1.1(12)*$ 29.6 $\pm 0.6(12)*$ 27.8 $\pm 0.7(12)*$ 32.6 $\pm 0.5(12)*$ 29.0 $\pm 0.6(12)*$ 29.0 $\pm 0.6(12)*$ 29.0 $\pm 1.1(12)*$ 17.0 $\pm 1.0(12)*$	Temperature, °CSalinity, $%_{oo}$ 21.4 + 0.7(12)* 18.3 ± 1.1(12)*24.8 ± 0.5(12) 24.1 ± 0.5(12)29.6 ± 0.6(12)* 27.8 ± 0.7(12)*21.1 ± 0.7(12) 22.5 ± 0.4(12)32.6 ± 0.5(12)* 29.0 ± 0.6(12)*25.5 ± 1.1(12) 24.7 ± 0.9(12)32.6 ± 0.5(12)* 29.0 ± 0.6(12)*25.5 ± 1.1(12) 24.7 ± 0.9(12)32.6 ± 0.5(12)* 29.0 ± 0.6(12)*25.5 ± 0.4(12) 24.7 ± 0.9(12)	

Table II-17. Results of statistical t-tests between the outer discharge bay (B) and its control bay (D): 1980 seasonal averages for temperature (°C), salinity (%,), and extinction coefficients (m⁻¹). The standard error is listed after the value; the number of observations follows in parentheses.

*Means for control and discharge are significant at the 95% confidence level (two-sample t-tests). *Means for control and discharge are significant at the 90% confidence level (two-sample t-tests).

Figure II-21. Seasonal mean temperature in the outer discharge and control bays for 1980. Bars represent <u>+</u> one standard error.

Fig. II-22). The higher discharge salinity was significant at the 90% confidence level.

Mean seasonal light extinction coefficients estimated from Secchi disk readings were significantly higher (90% confidence level) for the outer discharge bay compared to its control bay during the fall and winter (Table II-17 and Fig. II-23). Annual means of photometer light extinction measurements (Table II-18) indicated no significant difference between control and discharge bays.

System Gross Productivity, Net Productivity, and Night Respiration for 1980

System gross productivity for the outer discharge bay compared to its control bay was significantly higher (95% confidence level) during the spring, summer, and fall 1980 (Table II-19 and Fig. II-24). No significant difference in gross productivity between the outer discharge and control bays occurred during the winter. Outer discharge bay system gross productivity peaked in the summer with a seasonal mean of $6.42 \text{ g } 0_2 \cdot \text{m}^{-2} \cdot \text{d}^{-1}$. System gross productivity in the control bay peaked during the fall with a mean seasonal value of $4.63 \text{ g } 0_2 \cdot \text{m}^{-2} \cdot \text{d}^{-1}$. Mean seasonal net productivity in the outer discharge bay was significantly higher (95% confidence level) than the control bay during the spring, summer, and fall (Table II-19 and Fig. II-25). During the summer and fall, nighttime respiration was significantly higher (95% confidence level) in the outer discharge bay than in the control bay (Table II-19 and Fig. II-25).

Plankton Gross Productivity, Net Productivity, and Night Respiration for 1980

Mean seasonal plankton gross productivity in the control bay was significantly higher than the outer discharge bay only during the spring 1980

Figure II-22. Seasonal mean salinity in the outer discharge and control bays for 1980. Bars represent <u>+</u> one standard error.

Figure II-23. Seasonal average light extinction coefficients for the outer discharge and control bays for 1980. Bars represent <u>+</u> one standard error.

	Light Extinction, m ⁻¹		
	Discharge Bay (B)	Control Bay (D)	
Mean	1.17	1.16	
Standard deviation	0.09	0.37	
Range	1.03-1.34	0.70-1.84	
N	17	16	

Table II-18. Photometer-derived extinction coefficients for the outer discharge bay (B) and its control bay (D) for 1980.

.

Table II-19. Results of statistical t-tests between the outer discharge bay (B) and its control bay (D): 1980 seasonal averages for gross productivity ($P_G = P_N + R$), net productivity (P_N), and night respiration (R). The standard error is listed after the value; the number of observations follows in parentheses.

	P _G ,	P _N ,	R,
Season	g 0 ₂ •m ⁻² •d ⁻¹	g 02°m ⁻² •d ⁻¹	g 0 ₂ ·m ⁻² ·d ⁻¹
Spring			
Discharge Control	3.17 <u>+</u> 0.33(12)* 1.98 <u>+</u> 0.27(12)*	1.99 + 0.20(12)* 1.11 + 0.15(12)*	$\begin{array}{r} 1.18 + 0.15(12) \\ 0.87 + 0.17(12) \end{array}$
Summer			
Discharge Control	6.42 <u>+</u> 0.50(12)* 3.94 <u>+</u> 0.30(12)*	3.61 <u>+</u> 0.31(12)* 2.10 <u>+</u> 0.18(12)*	2.81 <u>+</u> 0.25(12)* 1.84 <u>+</u> 0.12(12)*
Fall			
Discharge Control	6.33 <u>+</u> 0.20(12)* 4.63 <u>+</u> 0.41(12)*	3.34 <u>+</u> 0.20(12)* 2.31 <u>+</u> 0.25(12)*	2.99 <u>+</u> 0.09(12)* 2.32 <u>+</u> 0.19(12)*
Winter			
Discharge Control	$\begin{array}{r} 1.72 + 0.38(12) \\ 2.29 + 0.54(12) \end{array}$	$1.05 + 0.20(12) \\ 1.40 + 0.36(12)$	$\begin{array}{r} 0.67 \pm 0.21(12) \\ 0.97 \pm 0.21(12) \end{array}$

*Means for control and discharge are significant at the 95% confidence level (two-sample t-tests).

Figure II-24. Seasonal mean system gross productivity for the outer discharge and control bays for 1980. Bars represent <u>+</u> one standard error.

Figure II-25. Seasonal mean system net productivity and respiration for the outer discharge and control bays for 1980. Bars represent <u>+</u> one standard error.

(Table II-20 and Fig. II-26). Plankton net productivity was not significantly different between the two bays during 1980 (Table II-20 and Fig. II-27). Mean seasonal plankton respiration was significantly higher (90% confidence level) in the control bay during the summer (Table II-20 and Fig. II-27). No other significant differences in plankton respiration between the outer discharge and control bays were detected.

Ecological Indices for 1980

Mean ecological efficiencies for the outer discharge bay and its control bay are given in Table II-21. During the spring (90% confidence level), summer, and fall (95% confidence level) means seasonal ecological efficiency was higher in the outer discharge bay than its control bay.

The P/R ratios are also presented in Table II-21. Mean values indicated greatest autotrophy during the spring and winter, with mean values >1.0 throughout the year. There was a significant difference (90% confidence level) between the outer discharge and control bays only during the summer 1980.

Comparison of 1973 Preoperational and 1980 Postoperational Data

Temperature, Salinity, and Light Extinction

Environmental parameters for the 1973 preoperational and 1980 postoperational studies are given in Figs. II-28 and II-29. The fall 1980 seasonal temperature was significantly higher (95% confidence level) than that of the fall 1973 value. Mean seasonal salinity during the summer was significantly lower in the 1980 study. Light extinction coefficients in summer 1980 were significantly higher than those recorded in 1973.

Table II-20. Results of statistical t-tests between the outer discharge bay (B) and its control bay (D): 1980 seasonal averages for gross plankton productivity ($P_G = P_N + R$), plankton net productivity (P_N), and plankton respiration (R). The standard error is listed after the value; the number of observations follows in parentheses.

Season	Plankton P _G , g O ₂ ·m ⁻² ·d ⁻¹	Plankton P _N , g 0 ₂ ·m ⁻² ·d ⁻¹	Plankton R, g O ₂ ·m ⁻² ·d ⁻¹
Spring			
Discharge Control	$\begin{array}{r} 0.98 \pm 0.16(12) \\ 1.51 \pm 0.23(11) \\ \end{array}$	$\begin{array}{r} 0.74 + 0.17(12) \\ 0.95 + 0.31(11) \end{array}$	$\begin{array}{r} 0.24 + 0.04(12) \\ 0.56 + 0.23(11) \end{array}$
Summer			
Discharge Control	4.50 <u>+</u> 0.57(12) 3.63 <u>+</u> 0.36(12)	$\begin{array}{r} 4.14 \ \pm \ 0.55(12) \\ 3.08 \ \pm \ 0.39(12) \end{array}$	0.36 <u>+</u> 0.07(12)* 0.56 <u>+</u> 0.07(12)*
Fall			
Discharge Control	$3.42 \pm 0.36(12)$ $3.36 \pm 0.39(12)$	$2.74 \pm 0.35(12) \\2.62 \pm 0.36(12)$	$\begin{array}{r} 0.68 + 0.13(12) \\ 0.74 + 0.07(12) \end{array}$
Winter			
Discharge Control	$\begin{array}{r} 1.06 + 0.25(11) \\ 1.34 + 0.34(12) \end{array}$	$\begin{array}{r} 0.81 \pm 0.20(11) \\ 0.87 \pm 0.25(12) \end{array}$	$\begin{array}{r} 0.25 + 0.08(11) \\ 0.47 + 0.12(12) \end{array}$

*Means for control and discharge are significant at the 90% confidence level (two-sample t-tests).

SEASON

Figure II-26. Seasonal mean plankton gross productivity for the outer discharge and control bays for 1980. Bars represent <u>+</u> one standard error.

Figure II-27. Seasonal mean plankton net productivity and respiration for the outer discharge and control bays for 1980. Bars represent \pm one standard error.

Table II-21. Results of statistical t-tests for evaluation of mean ecological efficiencies and P/R ratios ($P_G/2R$) between the outer discharge bay (B) and its control bay (D) for 1980. Standard error follows the value; number of observations in parentheses.

Season	Ecological Efficiency	Range	P/R Ratio	Range
Spring				
Discharge Control	$\begin{array}{r} 0.38 \pm 0.06(12)^{\dagger} \\ 0.23 \pm 0.03(12)^{\dagger} \end{array}$	0.19-0.85 0.03-0.43	$\begin{array}{r} 1.43 \pm 0.09(12) \\ 3.93 \pm 2.41(12) \end{array}$	0.95-2.04 0.7 <u>1</u> -30.25
Summer				
Discharge Control	0.58 <u>+</u> 0.04(12)* 0.36 <u>+</u> 0.03(12)*	0.25-0.80 0.21-0.62	$1.17 + 0.05(12)^{\dagger} \\ 1.07 + 0.02(12)^{\dagger}$	0.92-1.55 0.92-1.20
Fall				
Discharge Control	$0.64 \pm 0.03(12)*$ $0.48 \pm 0.06(12)*$	0.44 <u>0.91</u> 0.27 <u>0.99</u>	$1.07 + 0.04(12) \\ 1.00 + 0.04(12)$	0.84 <u>1</u> .37 0.82 <u>1</u> .27
Winter				
Discharge Control	$\begin{array}{r} 0.34 \pm 0.09(11) \\ 0.33 \pm 0.07(11) \end{array}$	0.08_0.94 0.00_0.67	$1.24 \pm 0.13(9) \\ 1.67 \pm 0.26(12)$	0.80-2.10 0.00-2.90
		^		

*Means for control and discharge are significant at the 95% confidence level (two-sample t-tests). †Means for control and discharge are significant at the 90% confidence level (two-sample t-tests).

Figure II-28. Comparison of 1973 and 1980 values for mean seasonal temperatures for the outer discharge bay. Bars represent <u>+</u> one standard error.

SEASON

Figure II-29. Comparison of 1973 and 1980 values for mean seasonal salinity and light extinction coefficients for the outer discharge bay. Bars represent <u>+</u> one standard error.

System Gross Productivity, Net Productivity, and Night Respiration

A significant decrease in system gross productivity occurred in winter 1980 with respect to the 1973 value (Fig. II-30). There were no significant differences in system net productivity between the 1973 and 1980 seasonal means (Fig. II-31). System night respiration was significantly lower in winter 1980.

Plankton Gross Productivity, Net Productivity, and Night Respiration

There were no significant differences between the plankton gross productivity in any season (Fig. II-32). Plankton net productivity was significantly higher in winter 1980 (Fig. II-33). There was a significant (95% confidence level) decrease in plankton respiration during fall and winter 1980.

Preoperational and Postoperational Trends: 1973, and 1977-1980

Temperature, Salinity, and Light Extinction

All mean seasonal temperatures were significantly higher in the outer discharge bay than the control bay during the postoperational period except for spring 1978 (Fig. II-34). Seasonal temperatures for both the preoperational and postoperational periods peak in either summer or fall of each year. Lowest temperatures for the control bay were recorded in the winter of each year. This also occurred in the outer discharge bay during 1973, 1977, and 1979; however, in 1978 and 1980, lowest temperatures were recorded in the spring season. A mean ΔT of $\sim 4^{\circ}C$ between the outer discharge and control bays during the postoperational period has been attributed to the thermal effluent from the three power plants.

Figure II-30. Comparison of 1973 and 1980 values for mean seasonal system gross productivity for the outer discharge bay. Bars represent <u>+</u> one standard error.

Figure II-31. Comparison of 1973 and 1980 values for mean seasonal system net productivity and respiration for the outer discharge bay. Bars represent <u>+</u> one standard error.

SEASON

Figure II-32. Comparison of 1973 and 1980 values for mean seasonal plankton gross productivity for the outer discharge bay. Bars represent <u>+</u> one standard error.

Figure II-33. Comparison of 1973 and 1980 values for mean seasonal plankton net productivity and respiration for the outer discharge bay. Bars represent <u>+</u> one standard error.

Figure II-34. Seasonal mean temperature for the outer discharge and control bays along with the schedule of power plant operation from 1973-1980. Darkened areas indicate Unit was on line. Bars represent + one standard error.

Mean seasonal salinities during the preoperational and postoperational periods were significantly different between the outer discharge and control bays for spring 1977 and 1978, summer 1978, and winter 1979 and 1980 (Fig. II-35). Generally, salinity was slightly higher in the discharge bay than its control bay.

Mean seasonal light extinction coefficients were significantly higher in the outer discharge bay relative to the control bay in fall and winter 1977, spring and summer 1978, fall 1979, and fall and winter 1980 (Fig. II-36). All observed differences were significant at the 90% confidence level except for winter 1977, which was significant at the 95% confidence .

System Gross Productivity, Net Productivity, and Night Respiration

Comparisons of system gross productivity in the outer discharge and control bays for 1973-1980 are presented in Fig. II-37. During the postoperational period, there was a trend for higher system gross productivity in the outer discharge bay relative to its control bay. Significantly higher productivity values from the outer discharge bay were recorded for spring 1978 and 1979 and spring, summer, and fall 1980.

System net productivity and respiration were consistently higher in the outer discharge bay than its control bay during the last three postoperational years (Fig. II-38). While outer discharge bay productivity has been relatively consistent during this period, the gross and net productivity of its control bay have shown a significant decrease. The long-term graph of ecological efficiency (Fig. II-39) indicates that high productivity values recorded in 1977 may have been due to higher than

Figure II-35. Seasonal mean salinity for the outer discharge and control bays along with the schedule of power plant operation from 1973-1980. Darkened areas indicate Unit was on line. Bars represent + one standard error.

Figure II-36. Seasonal mean light extinction coefficients for the outer discharge and control bays along with the schedule of power plant operation from 1973—1980. Darkened areas indicate Unit was on line. Bars represent <u>+</u> one standard error.

Figure II-37. Seasonal mean system gross productivyt for the outer discharge and control bays along with the schedule of power plant operation from 1973—1980. Darkened areas indicate Unit was on line. Bars represent <u>+</u> one standard error.

.

1I-93

Figure II-38. Seasonal mean system net productivity and respiration for the outer discharge and control bays along with the schedule of power plant operation from 1973-1980. Darkened areas indicate Unit was on line. Bars represent <u>+</u> one standard error.

Figure II-39. Seasonal mean plankton gross productivity for the outer discharge and control bays along with the schedule of power plant operation from 1973—1980. Darkened areas indicate Unit was on line. Bars represent <u>+</u> one standard error.

did show a significant decrease in the control bay between 1979 and 1980. <u>Plankton Gross Productivity, Net Pro-</u> ductivity, and Night Respiration

A comparison of plankton gross productivity between the outer discharge and control bays for 1973—1980 is presented in Fig. II-40. The only significant difference in mean seasonal plankton gross productivity occurred during summer 1977. The decrease of plankton gross productivity in the outer discharge bay during the first postoperational year could have been the response of an unadapted plankton community.

Mean seasonal plankton net productivity was significantly different between the outer discharge and control bays in summer 1977 and spring 1979 (Fig. II-41). Mean seasonal respiration was significantly higher in the control bay during summer 1978.

Discussion

Overview of 1980 Data

System gross productivity in the outer discharge bay responsed positively to the addition of thermal effluent throughout the sampling year except for the winter (Fig. II-24). The lack of stimulation during the winter may be accounted for by a significant increase in turbidity for the discharge bay relative to the control bay (Fig. II-23). Increased AT values between the outer discharge and control bays during the fall and winter (Fig. II-21) coincide with the nuclear unit coming on line. During the fall and winter additional discharge from the nuclear unit may have contributed to the increased turbidity in the outer discharge bay (Fig. II-36).

Figure II-40. Seasonal mean plankton net productivity and respiration for the outer discharge and control bays along with the schedule of power plant operation from 1973_1980. Darkened areas indicate Unit was on line. Bars represent + one standard error.

Figure II-41. Seasonal mean ecological efficiencies for the outer discharge and control bays along with the schedule of power plant operation from 1973-1980. Darkened areas indicate Unit was on line. Bars represent + one standard error.

86-II

Plankton productivity of the outer discharge bay showed little or no stimulation compared to the control bay during the seasons when gross productivity was greatly enhanced (Figs. II-24 and II-26). If the assumption discussed earlier is made, that the difference between those parameters is a measure of benthos productivity, it would appear that it is this benthos community that is responding positively to the power plants at Crystal River.

Referring to the annual means of percent plankton metabolism presented in Table II-22 for the outer discharge bay, a consistent and even contribution of planktonic and benthic systems to gross productivity in spite of variable seasonal means is seen. On the other hand, the control bay appears to be shifting from benthos to plankton domination. It is interesting that once again evidence of major changes in our control systems, which was assumed to be unperturbed by plant operation, is found. These changes may be due to normal temporal variation or it is possible that altered current regimes due to the building of the canal systems is impacting the estuaries on either side of the power plants in different ways.

Comparison of 1973 and 1980 Data

Increased temperatures during fall and winter 1980, with respect to the 1973 data, can be attributed to the operation of Unit 3 in conjunction with Units 1 and 2. Summer values for both years were similar because the nuclear unit was off line at both times.

The significant decrease in system gross productivity for winter 1980 cannot be addressed due to the lack of insolation and turbidity data for 1973.

	Control (D)			Discharge (B)						
Season	1973	1977	1978	1979	1980	1973	1977	1978	1979	1980
Spring	No data	64.0	84.6	61.0	76.3	No data	69.8	56.4	65.6	31.0
Summer	50.7	52.3	72.2	99.8	92.1	60.4	30.0	65.3	78.9	70.1
Fall	22.8	59.2	49.0	70.5	72.6	73.2	59.9	36.8	52.4	54.0
Winter	15.4	27.3	62.0	29.9	46.5	15.4	49.8	35.8	29.3	61.6
Mean	29.6	50.7	67.0	65.3	71.9	49.7	52.4	48.6	56.6	54.2
Standard deviation	18.6	16.3	15.1	28.8	18.9	30.4	17.0	14.6	21.1	16.8

Table II-22. Plankton gross productivity as a percentage of total gross productivity for the outer discharge bay (B) and its control bay (D) for 1973 (preoperational) and 1977-1980 (postoperational).

There was no significant stimulation of plankton gross productivity during the 1980 study, yet the net productivities during 1980 were approximately 62% higher (significantly higher in the winter). This increase may be accounted for in part by increased thermal effluent in 1980. Plankton respiration was reduced in 1980 by approximately 67% for the 1973 measurements and this would explain why we do not see a significant increase in the gross productivity.

Preoperational and Postoperational Trends with Respect to Power Plant Operation: 1973, 1977-1980

During the preoperational period (1973), system metabolism was not significantly different between the outer discharge and its control bay (see Table II-23). Also, during the first year of plant operation with three units on line (1977), gross productivity of the outer discharge bay was not affected in spite of much higher water temperatures (Figs. II-34 and II-37). In subsequent years, the gross productivity of the outer discharge bay has not changed significantly in spite of variable plant effects __apparently plant operation is having no deleterious effect on this discharge bay. In fact, if the outer control bay represents a true control situation, power plant operation is clearly stimulating gross and net production of the outer discharge bay (Table II-23). It appears quite obvious, however, that the control bay is undergoing significant community structure changes. Table II-24 indicates this trend with plankton productivity dominance shifting from the discharge bay in 1973 to the intake bay in 1980. It is not clear if power plant operation (e.g., cooling water intake rate) is affecting this trend on the control side.

Table II-23. The seasonal average percent gross productivity of the outer discharge bay (B) relative to the gross productivity of its control bay (D) for 1973, 1977—1980. Number in parentheses indicates number of observations.

		% Total Gross Productivity					
Season	1973	1977	1978	1979	1980		
Spring	No data	175.4(1)	153.1(10)	135.3(9)	159.6(12)		
Summer	99.8(9)	82.0(4)	121.7(12)	111.3(12)	162.9(12)		
Fall	81.9(5)	124.0(11)	124.7(10)	113.4(10)	136.7(12)		
Winter	<u>111.2</u> (1)	<u>118.2</u> (7)	206.6(9)	<u>117.3</u> (11)	75.1(12)		
Mean	97.6	124.9	151.5	119.3	133.6		
Standard deviation	14.8	38.5	39.3	10.9	40.7		

Table II-24. The seasonal average percent plankton gross productivity of the outer discharge bay (B) relative to the plankton gross productivity of its control bay (D) for 1973, 1977—1980. Number in parentheses indicates number of observations.

	% Plankton Gross Productivity				
Season	1973	1977	1978	1979	1980
Spring	No data	191.4(1)	101.7(9)	145.6(9)	64.9(11)
Summer	119.0(2)	46.9(3)	109.9(12)	88.1(11)	124.0(12)
Fall	263.0(3)	125.4(11)	79.6(10)	84.4(10)	101.8(12)
Winter	<u>111.4(</u> 1)	219.4(6)	<u>119.3</u> (8)	<u>114.8</u> (11)	(11)
Mean	164.5	145.8	102.6	108.2	92.5
Standard deviation	85.4	76.8	17.0	28.4	25.9

Summary

- 1. The outer discharge bay's system gross productivity averaged 34% higher or approximately 1.20 g $O_2 \cdot m^{-2} \cdot d^{-1}$ greater than the control bay on an annual basis.
- 2. Mean seasonal temperatures for the outer discharge bay were significantly higher during 1980 with respect to its control bay. Temperature in the discharge bay averaged 3.7°C greater than those in the control bay
- 3. An apparent trend towards increased productivity in the outer discharge bay was accompanied by a decrease in productivity of its control bay.
- 4. Operation of Unit 3 in conjunction with Units 1 and 2 at the Crystal River power plant caused no measureable decrease of system metabolism in the outer discharge bay ecosystem.

CHAPTER 5

COMMUNITY METABOLISM OF THE DISCHARGE BAY (OB) AND THE CONTROL BAY (C)

William F. Coggins

Introduction

This chapter presents community metabolism data obtained from the discharge bay (OB) and its control bay (C) (see Fig. II-2). The discharge bay is located approximately 3 km seaward from the power generating station, has a mean depth of 2.3 m, and is bounded by oyster bars to the west and east and by dredge spoil banks on the north and south. The control bay has a mean depth of 2.6 m and has less obstructed water flow due to the absence of oyster bars to the west and south. Spoil banks and an oyster/sand bar form the remaining boundaries of this bay, to the north and east, respectively.

Total community and plankton metabolism, temperature, salinity, and light extinction data will be examined to assess the possible effects of the thermal effluent on the discharge bay community for both the current study year (1980) and previous study years (1977-1979).

Methods

A detailed discussion of the methods and materials used to measure the parameters (total community metabolism, plankton metabolism, temperature, salinity, and light extinction) can be found in chapter 3 of this report. The diffusion coefficient (K) used for correction of open-water metabolism data for the discharge bay was 1.51 g $0_2 \cdot m^{-2} \cdot hr^{-1}$ at

100% saturation deficit. The value of K used for the control bay was 0.44 g $O_2 \cdot m^{-2} \cdot hr^{-1}$. These coefficients were based on single measured values using the diffusion dome method as discussed in chapter 3. The higher diffusion coefficient measured for the discharge bay can be attributed to the higher current in this bay due to cooling water circulation.

The bimonthly data from which seasonal means were derived are given in Appendix C. Two-sample t-tests were used to compare data collected from the two bays. Seasons for the discharge bay and its control bay are defined as follows:

Spring:	February—April
Summer:	May—July
Fall:	August—October
Winter:	November-January.

Outage data for Crystal River Units 1, 2, and 3 during 1980 are given in Table II-1.

Results

Temperature, Salinity, and Light Extinction Coefficients for 1980

Mean seasonal temperature differences between the discharge bay and the control bay on the days measured ranged between 4.4° C in the winter to 1.7° C in the summer during the 1980 sampling year (Table II-25 and Fig. II-42). All temperature differences (Δ T) between the discharge bay and the control bay were significant at either the 90% or 95% confidence level.

Mean seasonal salinities measured during 1980 for the discharge bay and the control bay are given in Table II-25 and Fig. II-43. Seasonal salinities for the control bay were slightly higher (mean difference of

Season	Temperature, °C	Salinity, %。	Extinction Coefficient, m ⁻¹
Spring		-	
Díscharge Control	$20.7 \pm 0.7(12)^{\dagger}$ 18.2 \pm 1.0(12)^{\text{t}}	$24.6 \pm 0.5(12) \\ 24.9 \pm 0.4(12)$	$1.70 \pm 0.13(12) \\ 1.88 \pm 0.21(12)$
Summer			
Discharge Control	$\begin{array}{r} 29.3 + 0.6(12) \\ 27.6 + 0.6(12) \\ \end{array}$	$21.0 \pm 0.6(12)*$ $23.5 \pm 0.4(12)*$	2.30 + 0.17(12) 2.46 + 0.17(12)
Fall			
Discharge Control	$31.9 \pm 0.6(12)*$ 29.0 $\pm 0.6(12)*$	$25.2 \pm 1.1(12) \\ 25.9 \pm 0.8(12)$	$1.79 \pm 0.15(12)^{-1}$ $1.41 \pm 0.15(12)^{-1}$
Winter			
Discharge Control	21.5 <u>+</u> 0.9(12)* 17.1 <u>+</u> 0.9(12)*	$26.0 \pm 0.5(12) \\ 26.2 \pm 0.3(12)$	$1.30 \pm 0.07(12) \\ 1.18 \pm 0.08(12)$

Table II-25. Results of statistical t-tests between the discharge bay (OB) and its control bay (C): 1980 seasonal averages for temperature (°C), salinity (%.), and extinction coefficients (m⁻¹). The standard error is listed after the value; the number of observations follows in parentheses.

*Means for control and discharge are significant at the 95% confidence level (two sample t-tests). †Means for control and discharge are significant at the 90% confidence level (two sample t-tests).

42. Seasonal mean temperature in the discharge and control bays for 1980. Bars represent <u>+</u> one standard error.

Figure II-43. Seasonal mean salinity in the discharge and control bays for 1980. Bars represent <u>+</u> one standard error.

0.9‰) than the discharge bay for each season and were only significantly different (2.5‰) for the summer at the 90% confidence level.

Mean seasonal extinction coefficients estimated from Secchi disk readings (Table II-25 and Fig. II-44) were not significantly different between the discharge bay and the control bay, except during the fall (0.4 m^{-2} increase in the control bay). Photometer readings were taken to further verify Secchi disk measurements (Table II-26).

System Gross Productivity, Net Productivity, and Night Respiration for 1980

Mean seasonal system gross productivity, net productivity, and night respiration data for the discharge and control bays are given in Table II-27 and Figs. II-45 and II-46.

System gross productivity, net productivity, and nighttime respiration in the discharge bay were all significantly higher than the control bay during the fall. Net productivity and nighttime respiration were both significantly higher during the spring. No other significant differences between the system metabolism in the control and discharge bays occurred during 1980.

Plankton Gross Productivity, Net Productivity, and Night Respiration for 1980

Mean seasonal plankton gross productivity, net productivity, and respiration data for the discharge and control bays are given in Table II-28 and Figs. II-47, II-48, and II-49. Plankton gross productivity for the discharge bay was significantly higher during the fall as was plankton net productivity and plankton respiration. No other significant differences between the plankton metabolism of the control and discharge bays were detected.

Figure II-44. Seasonal average light extinction coefficients for the control and discharge bays for 1980. Bars represent <u>+</u> one standard error.

	Light Extinction, m ⁻¹		
	Discharge Bay (OB)	Control Bay (C)	
Mean	1.09	1.21	
Standard deviation	0.24	0.41	
Range	0.75-1.70	0.66—1.84	
N	17	17	

Table II-26. Photometer-derived extinction coefficients for the discharge bay (OB) and its control bay (C) for 1980.

Table II-27. Results of statistical t-tests between the discharge bay (OB) and its control bay (C): 1980 seasonal averages for gross productivity ($P_G = P_N + R$), net productivity (P_N), and night respiration (R). The standard error is listed after the value; the number of observations follows in parentheses.

	P _G ,	P _N ,	R,
Season	g 0 ₂ ·m ⁻² ·d ⁻¹	g 0 ₂ ·m ⁻² ·d ⁻¹	g 02·m ⁻² ·d ⁻¹
Spring			
Discharge Control	3.14 + 0.37(12) 2.19 + 0.42(12)	2.58 <u>+</u> 0.36(12)* 1.24 <u>+</u> 0.26(12)*	$\begin{array}{r} 0.56 + 0.12(12)^{\dagger} \\ 0.95 + 0.19(12)^{\dagger} \end{array}$
Summer			
Discharge Control	5.37 <u>+</u> 0.98(12) 4.25 <u>+</u> 0.34(12)	$3.44 \pm 0.83(12)$ 2.19 \pm 0.24(12)	$\begin{array}{r} 1.93 \pm 0.31(12) \\ 2.06 \pm 0.14(12) \end{array}$
Fall			
Discharge Control	8.07 <u>+</u> 0.77(12)* 5.10 <u>+</u> 0.28(12)*	4.80 <u>+</u> 0.56(12)* 2.68 <u>+</u> 0.19(11)*	3.27 ± 0.39(12)† 2.41 ± 0.16(12)†
Winter			
Discharge Control	$2.52 \pm 0.54(12) \\ 1.96 \pm 0.43(12)$	$1.79 + 0.21(12) \\ 1.27 + 0.32(12)$	$\begin{array}{r} 0.74 \pm 0.39(12) \\ 0.75 \pm 0.20(11) \end{array}$

*Means for control and discharge are significant at the 95% confidence level (two-sample t-tests). †Means for control and discharge are significant at the 90% confidence level (two-sample t-tests).

Figure II-45. Seasonal mean system gross productivity for the discharge and control bays for 1980. Bars represent <u>+</u> one standard error.

Figure II-46. Seasonal mean system net productivity and respiration for the discharge and control bays for 1980. Bars represent <u>+</u> one standard error.

Table II-28. Results of statistical t-tests between the discharge bay (OB) and its control bay (C): 1980 seasonal averages for gross plankton productivity ($P_G = P_N + R$), plankton net productivity (P_N), and plankton respiration (R). The standard error is listed after the value; the number of observations follows in parentheses.

Season	Plankton ^P G, g O ₂ ·m ⁻² ·d ⁻¹	Plankton P _N , g O ₂ ·m ⁻² ·d ⁻¹	Plankton R, g O ₂ ·m ⁻² ·d ⁻¹
Spring			
Discharge Control	$\frac{1.62 + 0.20(12)}{2.18 + 0.37(11)}$	$1.21 + 0.22(12) \\ 1.74 + 0.36(11)$	$\begin{array}{r} 0.41 + 0.10(12) \\ 0.44 + 0.09(11) \end{array}$
Summer			
Discharge Control	6.55 <u>+</u> 0.73(12) 5.46 <u>+</u> 0.54(12)	5.94 <u>+</u> 0.73(12) 4.77 <u>+</u> 0.57(12)	$0.62 \pm 0.07(12)$ $0.69 \pm 0.16(12)$
Fall			
Discharge Control	6.42 <u>+</u> 0.41(12)* 4.39 <u>+</u> 0.36(12)*	5.66 + 0.38(12)* 3.19 + 0.34(12)*	$\begin{array}{r} 0.76 \pm 0.11(12) \\ 1.20 \pm 0.11(12) \\ \end{array}$
Winter			
Díscharge Control	$\begin{array}{r} 1.81 + 0.31(12) \\ 1.73 + 0.43(12) \end{array}$	$1.10 \pm 0.21(12) \\ 1.14 \pm 0.33(12)$	$\begin{array}{r} 0.71 \pm 0.15(12) \\ 0.59 \pm 0.13(12) \end{array}$

*Means for control and discharge are significant at the 95% confidence level (two-sample t-tests).

Figure II-47. Seasonal mean plankton gross productivity for the discharge and control bays for 1980. Bars represent <u>+</u> one standard error.

Figure II-48. Seasonal mean plankton net productivity for the discharge and control bays for 1980. Bars represent <u>+</u> one standard error.

SEASON

Figure II-49. Seasonal mean plankton respiration for the discharge and control bays for 1980. Bars represent <u>+</u> one standard error.

Ecological Indices

Ecological efficiencies are presented in Table II-29. The discharge bay mean during the fall was significantly higher than the control bay.

The P/R ratios are also presented in Table II-29. P/R ratios were significantly higher in the discharge bay compared to the control bay during spring and summer 1980 (95% confidence level).

Temperature, Salinity, and Light Extinction Coefficients for 1977—1980

Temperature data throughout the 4-year period from 1977—1980 demonstrated seasonal trends corresponding to insolation, with the highest temperatures recorded in the summer and the lowest during the winter (Fig. II-50). An increase of approximately 3.1°C in the discharge bay water temperature during the postoperational period has been attributed to the thermal effluent from the three power plants. Mean seasonal temperatures for the discharge bay were all significantly higher than the control bay except for spring 1978, winter 1978, and summer 1979.

Salinity measurements for the two bays during the past 4 years were not significantly different except for spring 1978, summer 1979, and summer 1980 (Fig. II-51). The lower salinity values for the discharge bay could be accounted for by a slower exchange rate with offshore waters due to the semienclosed nature of the discharge bay. The control bay may receive greater exchange with higher salinity, offshore water because of the absence of any appreciable seaward boundary (i.e., oyster bars).

Light extinction values for the postoperational study were significantly higher for the discharge bay between fall 1977 and fall 1978 (Fig. II-52). The fall 1980 extinction value from the discharge bay was also significantly higher than from the control bay. The increase in light

Season	Ecological Efficiency	Range	P/R Ratio	Range
Spring				
Discharge Control	$\begin{array}{r} 0.37 \pm 0.05(12) \\ 0.26 \pm 0.06(12) \end{array}$	0.05-0.73 0.00-0.70	2.57 <u>+</u> 0.39(9)* 1.25 <u>+</u> 0.10(11)*	1.08-4.31 0.78-1.91
Summer				
Discharge Control	$\begin{array}{r} 0.49 \pm 0.08(12) \\ 0.38 \pm 0.02(12) \end{array}$	0.10—1.03 0.22—0.49	$1.73 \pm 0.31(12)*$ $1.03 \pm 0.05(12)*$	0.54—3.77 0.76—1.31
Fall				
Discharge Control	0.83 <u>+</u> 0.09(12)* 0.52 <u>+</u> 0.04(12)*	0.15-1.32 0.31-0.71	$\begin{array}{r} 1.32 \pm 0.15(12) \\ 1.07 \pm 0.05(12) \end{array}$	0.74—2.50 0.88—1.44
Winter				
Discharge Control	$\begin{array}{r} 0.49 + 0.14(11) \\ 0.30 + 0.06(11) \end{array}$	0.14—1.78 0.08—0.68	$3.15 \pm 1.69(7)$ $2.66 \pm 1.21(10)$	0.82—13.29 0.58—12.81

Table II-29. Results of statistical t-tests for evaluation of mean ecological efficiencies and P/R ratios ($P_G/2R$) between the discharge bay (OB) and its control bay (C) for 1980. Standard error follows the value; number of observations in parentheses.

*Means for control and discharge are significant at the 95% confidence level (two-sample t-tests).

Figure II-50. Seasonal mean temperature for the discharge and control bays along with the schedule of power plant operation from 1977--1980. Darkened areas indicate Unit was on line. Bars represent <u>+</u> one standard error.

Figure II-51. Seasonal mean salinity for the discharge and control bays along with the schedule of power plant operation from 1977—1980. Darkened areas indicate Unit was on line. Bars represent <u>+</u> one standard error.

Figure II-52. Seasonal mean light extinction coefficients for the discharge and control bays along with the schedule of power plant operation from 1977—1980. Darkened areas indicate Unit was on line. Bars represent <u>+</u> one standard error.

• • •

attenuation for both bays during the past 2 years could be the result of dredging operations in the intake canal.

System Gross Productivity, Net Productivity, and Night Respiration for 1977-1980

System gross productivity measurements for the discharge and control bays during the postoperational period display clear seasonal trends. Maximum values were recorded in the summer or fall, and minimum values were recorded in the winter (Fig. II-53). Variable depression and stimulation of productivity for the discharge bay relative to the control bay occurred throughout the first 3 years of this study (see Table II-30). Only during the last year (1980) was there a consistently higher productivity in the discharge bay. The trend for increasing maximum system productivity in the discharge bay is confounded by a simultaneous decrease in this parameter in the control bay. The effect on productivity, if any, of plant operation on this control bay is unclear. The trend of increased peak productivity of the discharge bay may indicate adaptation to power plant operation.

System respiration and net productivity (Fig. II-54) follow similar patterns as total gross productivity. Net productivity in the discharge bay increased rapidly during the first part of 1980 from its lowest value recorded (0.49 g $0_2 \cdot m^{-2} \cdot d^{-1}$, fall 1979) to its highest recorded value 4.80 g $0_2 \cdot m^{-2} \cdot d^{-1}$) in fall 1980.

Plankton Gross Productivity, Net Productivity, and Night Respiration for 1977-1980

Mean seasonal plankton gross productivity values between summer 1977 and winter 1980 for the discharge and control bays are given in Fig. II-55. Seasonal trends between this period are clear, with highest values found in the summer and the lowest values in the winter. The plankton

Table II-30. The seasonal average percent gross productivity of the discharge bay (OB) relative to the gross productivity of the control bay (C) for 1977—1980. Number in parentheses indicates number of observations.

		% Total Gross	Productivity	
Season	1977	1978	1979	1980
Spring	No data	134.5(10)	107.5(9)	142.7(12)*
Summer	47.0(3)*	73.3(11)*	104.5(12)*	126.4(12)*
Fall	101.1(10)	87.8(10)*	56.1(10)*	158.2(12)
Winter	103.2(7)	<u>132.9</u> (9)	<u>67.1</u> (10)	<u>127.9</u> (12)
Mean	83.8	107.1	83.8	138.8
Standard deviation	31.9	31.2	26.1	14.9

*Crystal River Unit 3 was off line for greater than 50% of the season indicated.

Figure II-54. Seasonal mean system net productivity and respiration for the discharge and control bays along with the schedule of power plant operation from 1977—1980. Darkened areas indicate Unit was on line. Bars represent <u>+</u> one standard error.

Figure II-55. Seasonal mean plankton gross productivity for the discharge and control bays along with the schedule of power plant operation from 1977-1980. Darkened areas indicate Unit was on line. Bars represent <u>+</u> one standard error.

productivity was significantly higher in the discharge bay relative to the control bay during fall 1980.

Table II-31 presents the discharge seasonal plankton gross productivity data as a percentage of control values. During the 4-year study, the yearly average values have been variable with no consistent trends between discharge and control.

Plankton respiration and net productivity seasonal means for 1977—1980 are given in Fig. II-56. Seasonal trends are evident, but no consistent, long-term trends were observed. The magnitude of plankton net productivity and respiration have not significantly changed during 4 years of study.

Discussion

Overview of 1980 Data for the Discharge and Control Bays

Overall, gross productivity of the outermost discharge bay was positively correlated with the addition of thermal effluent from the power plants during 1980. Total system gross productivity for the discharge bay peaked during the fall when the bay was under the effect of thermal loading by all three power plants. Total system gross productivity was higher in the discharge bay even when the nuclear unit was off line in the spring and summer. The lowest ΔT between the discharge and control bays occurred during these seasons. An increase in the ΔT values during the fall and winter accompanied higher system productivity in the discharge bay.

In order to approximate the overall effect of plankton in these outermost bays, Table II-32 summarizes plankton gross productivity as a percentage of system gross productivity. Plankton gross productivity consistently accounted for more than 90% of total gross productivity. Plank-

II~130

Table II-31. The seasonal average percent plankton gross productivity of the discharge bay (OB) relative to the plankton gross productivity of the control bay (C) for 1977—1980. Number in parentheses indicates number of observations.

	%	Plankton Gros	s Productivity	
Season	1977	1978	1979	1980
Spring	No data	140.1(9)	106.5(9)	74.1(11)*
Summer	No data	125.9(9)*	78.3(10)*	120.1(12)*
Fall	77.0(9)	100.5(8)*	82.1(10)*	146.1(12)
Winter	<u>107.7</u> (7)	97.7(9)	65.5(11)	104.5(12)
Mean	92.4	116.1	83.1	111.2
Standard deviation	21.7	20.4	17.1	30.1

*Crystal River Unit 3 was off line for greater than 50% of the season indicated.

Figure II-56. Seasonal mean plankton net productivity and respiration for the discharge and control bays along with the schedule of power plant operation from 1977—1980. Darkened areas indicate Unit was on line. Bars represent <u>+</u> one standard error.

Control Bay (C)				Discharge Bay (OB)				
Season	1977	1978	1979	1980	1977	1978	1979	1980
Spring	No data	97.4	80.3	102.7	No data	101.5	92.2	51.6
Summer	79.2	92.7	147.4	107.8	No data	159.2	110.4	122.0
Fall	88.1	81.7	106.9	86.1	67.0	93.5	156.5	79.4
Winter	45.4	100.9	66.1	88.3	47.4	74.2	64.4	71.4
Mean	70.9	93.2	100.2	96.2	57.2	107.1	105.9	81.1
Standard deviation	22.5	8.4	35.7	10.7	13.9	36.6	38.7	29.7

Table II-32. Plankton gross productivity as a percentage of total gross productivity for the discharge bay (OB) and control bay (C) for postoperational years (1977-1980).

ton gross productivity peaked during the summer season in both bays and was significantly stimulated during the fall in the discharge bay compared to the control bay plankton productivity.

Postoperational Trends with Respect to Power Plant Operation: 1977--1980

Both the outer discharge bay and its control bay appear to be plankton-dominated systems (see Table II-32), which may allow these deeper systems to respond quickly to changes in thermal loading. During the past 4 years system productivity of the outermost discharge bay has shown both increased and decreased response compared to its control. Figure II-53 suggests a decline in gross productivity, however, Fig. II-57, which gives production per unit insolation (efficiency), indicates little change except in the last year. Increased turbidity in the control bay (Fig. II-52) in 1980 may explain the decreased productivity. In the discharge bay system gross productivity increased in 1980.

Summary

- 1. System gross productivity was 1.4 g $O_2 \cdot m^{-2} \cdot d^{-1}$ (39%) higher in the outermost discharge bay compared to its control in 1980.
- Temperatures of the discharge bay were approximately 2-4°C higher than in the corresponding control bay during 1977-1980.
- 3. Both the discharge and control bays were plankton dominated in terms of gross productivity.
- 4. Postoperational (1977-1980) trends in the discharge bay suggest that adaptation to thermal effluent is taking place while long-term trends in the control bay appear to indicate possible impacts of plant operation on the non-thermally affected estuary at Crystal River.

CHAPTER 6

COMMUNITY METABOLISM OF THE MARSH ECOSYSTEM

Jeffrey J. Kosik

Introduction

In this chapter salt marsh structure and metabolism measurements are reported, continuing the studies designed to assess any additional impact of the thermal discharge from Unit 3 of the Crystal River Energy Center on the estuarine marsh environment. Biological structure and community metabolism measurements were taken from areas that were affected by the thermal effluent and compared with data from biotically similar areas that were not subjected to the thermal addition. These measurements were then compared with data from previous studies (Young 1974; Hornbeck 1978; Odum et al. 1978; Caldwell et al. 1979, 1980).

Methods previously used were duplicated as closely as practical in order to provide a basis for comparing conditions prior to and subsequent to operation of the nuclear unit. Quarterly measurements of structure included harvest of the dominant grasses for height and weight parameters, counts of the salt marsh periwinkle snail <u>Littorina irrorata</u>, and the number of fiddler crab (genus <u>Uca</u>) burrows. Metabolism measurements included net photosynthesis and respiration made by analysis of CO_2 fluxes in the marsh community. The physical parameters that were monitored include insolation, air temperature, and water temperature. Study Sites

The sites chosen for this study are in two areas, one of which received tidal inundation by water of elevated temperature due to its

proximity to the discharge canal (Fig. II-58). The control area received no thermal additions from the effluent due to a long jetty that was constructed to avoid recycling previously heated water through the power plant. Preoperational control data were collected on the offshore islands. These are adjacent to the present sites where all postoperational data were collected.

Both the control and thermally impacted marshes received semidiurnal tidal inundation. The floristic composition of these marshes was similar, with two dominating species. Most of the marsh areas surrounding the Crystal River site were covered with patches of <u>Juncus roemarianus</u>, which grows to a height of 2 m. These areas were of higher elevation and received less frequent and less severe tidal inundation than areas with <u>Spartina alterniflora</u>, which was typically found along the fringes of the <u>Juncus</u> marshes. Water flushing the thermally impacted marshes was 1.6-9.6°C higher than the water flooding the control marsh.

Thermal Discharge Conditions

When under normal loading conditions, Crystal River Units 1 and 2 discharge a combined average of 2410 $m^{3} \cdot min^{-1}$, and Unit 3 discharges an average of 2366 $m^{3} \cdot s^{-1}$ (USAEC 1973). During 1980, Unit 3 was inoperative from March through August; however, heated effluent was released by Units 1 and 2 during this time. The spring and summer samplings were conducted with Unit 3 off line, while the fall sampling took place in November, 3 months after Unit 3 went on line.

Figure II-58. Map showing locations of preoperational and postoperational sampling sites. Control data for 1973 were collected around Negro Island, and thermal data for 1973 were collected along tidal creeks. Data for 1977-1980 were collected on the exterior edges of marshes as indicated.

Biological Structure

Biomass measurements were taken during this portion of the study as a method of estimating the net productivity of the thermally affected and control marshes. To quantify standing crops of <u>J</u>. <u>roemarianus</u> and <u>S</u>. <u>alterniflora</u>, vegetation harvests were collected quarterly in the intake and discharge areas. Five replicate samples for <u>Juncus</u> and nine replicate samples for <u>Spartina</u> were collected in both marshes each quarter. Hoops that covered an area of 0.25 m^2 were tossed over the <u>Spartina</u> or <u>Juncus</u> plants, and community biomass was sampled from the area below the hoops. The number of dead, flowering, and live stems in various length classes was recorded for each quadrat. Wet and dry weights for live and dead material were also determined. After each quadrat was harvested, the number of crab burrows in the marsh substrate was counted as an index of <u>Uca</u> activity. During high tide, <u>Littorina</u> became visible and numbers were subsequently recorded.

Metabolism

Plant community metabolism measurements were made quarterly on both the thermally affected and the control sites by enclosing an area of marsh plants and substrate with polyethylene chambers. These chambers were continually flushed with ambient air, which was circulated by electric blowers. To quantify the productivity of the plants, gaseous exchange of CO_2 and water between the air and biota was recorded by measuring concentration differences across the individual chambers with an infrared gas analyzer (IRGA). Air and water temperature and insolation were monitored for the duration of the field research. Figure II-59 shows the major components of the metabolism study. The instruments were housed in a

Figure II-59. General schematic of metabolism apparatus. Arrows indicate direction of air flow.

weather-protected mobile lab, and electricity was provided by a portable 6-KW generator.

Field Apparatus for Air Sampling and CO₂ Measurement

At each research site four polyethylene chambers with a base area of 0.25 m^2 were placed over two plots each of <u>Spartina</u> and <u>Juncus</u>. Air was circulated through the chambers by four constant-delivery centrifugal blowers supplying ambient air through a system of 10-cm diameter PVC pipes and flexible ducting. On the top of each chamber was a 10-cm diameter metal cylinder, which accepted the input of air from the blowers. A similar 10-cm diameter cylinder was employed to direct the air leaving the chamber and was located opposite the intake. Air samples were taken as the air entered the chamber and at the exhaust pipe as it exited. Intake and exhaust air flows were sampled for 15 minutes per chamber per hour for 24-36 hours. A vacuum pump drew the sample air from the chambers through tygon tubing to 1-gallon glass mixing jars. The timer box regulated the distribution of the samples through the IRGA, which measured the concentration of CO_2 , and then passed the sample through a dew point hygrom-

Timer Box

The purpose of the timer box was to regulate the air flow through the IRGA. The timer box consisted of a 60-minute-per-revolution timer wheel, four 3 way-valve double solenoids, and one 2 way-valve single solenoid. The timer wheel contained single pole-double throw switches, which controlled the solenoid valves selecting the chamber air streams (ambient from the entrance and exhaust from the exit) to be pumped through the IRGA. Small vacuum pumps supplied the IRGA with the air samples.

A Beckman model 215-B IRGA was used in this study. By design, the IRGA allows versatility in application, sensitivity, and a selection of ranges for gas concentrations to be analyzed. Because the detector within the IRGA compares differences in energy absorption between gases in two internal cells, one may compare a reference gas to an unknown or compare two unknowns directly. The differential method of analysis was employed in this study due to the high sensitivity $(1.0 \pm 0.5 \text{ ppm})$ that is achieved when ambient and exhaust samples are directly compared. The millivolt output of this arrangement represented a change in $\rm CO_2$ across the chamber. The analyzer response was approximately linear over the range of ambient CO2 concentrations so that the sensitivity, measured as the change in millivolts per change in ppm, was fairly constant over the sampling ranges. Ambient air was routed to both cells of the IRGA during the first 7 minutes of each 15-minute cycle. For the remainder of the cycle, exhaust air was sent through one cell, and the CO2 concentration was compared against that of the ambient sample in the other cell. The resulting energy differential yielded a millivolt output, which was recorded on a potentiometric strip chart recorder. The IRGA was calibrated at approximately 12-hour intervals using bottled CO2 standard gases (305 ppm, 322 ppm, and 350 ppm).

Calculation of Photosynthesis and Respiration

An estimate of carbon fixation/release was calculated from the CO_2 and temperature data, and the equation, which corrects for stochiometry and the gas laws (after Brown and Rosenberg 1968), is as follows:

$$g C \cdot hr^{-1} = \frac{F \times K \times \Delta[CO_2]}{T}$$

IRGA

where, $F = flow rate (m^{3} \cdot hr^{-1})$,

 Δ [CO₂] = change in CO₂ concentration across the chamber (ppm), T = air temperature (°K), and K = a constant defined as:

$$K = \frac{(12 \text{ g C} \cdot \text{mole}^{-1}) \text{ x } (10^3 \text{ l} \cdot \text{m}^{-3}) \text{ x } 273^\circ \text{K}}{22.41 \text{ mole}^{-1} \text{ x } 10^6 \text{ ppm}}$$

= 0.14625 g C \cdot \text{m}^{-3} \cdot \text{K} \cdot \text{ppm}^{-1}.

Since the range of atmospheric pressure was generally less than 20 millibars, in effect less than 2%, the atmospheric pressure was assumed to be constant. The rate of carbon fixation or release was plotted for each of the several chambers being measured, along with physical climatic data for the corresponding time period. Usually the graphs for a 24-hour period include parts of two calendar days because chambers were generally set up during the daylight hours and were run for at least 24 hours. On metabolism rate graphs, the areas above the zero line are designated as net photosynthesis (NP). The areas below the zero line during the daylight hours are subtracted from the net photosynthesis values and the difference is designated as net productivity (P_N) . The total area below the line during the night is referred to as nighttime respiration (R). The average rate of nighttime respiration was assumed constant throughout the day as an estimate of the 24-hour respiration rate (R_{24}) . The sum of net productivity and nighttime respiration is an index of gross productivity (P_G) (for greater detail, see Brown [1978] and Hornbeck [1979]).

To compensate for the amount of biomass in each chamber, gross productivity values were divided by the sample weight to obtain the specific

metabolism. This quotient was then multiplied by the seasonal mean value of total biomass to normalize for weight.

A useful parameter in the analysis of metabolism measurements is the P/R ratio, which gives an indication of the daily prevalence of production or consumption in the ecosystem. This ratio was obtained by dividing the gross productivity value by the 24-hour respiration measurement. P/R values greater than unity reflect a net increase of organic matter in the community, while ratios less than one indicate that the community is consuming more organic carbon than is being produced, hence, a decline in the organic storage.

Efficiency of gross production was estimated as the ratio between gross production and total insolation and used a conversion of grams of carbon to kilocalories as is defined below.

> Efficiency of gross production (%) = $\frac{\text{gross production } (\text{g } \text{C} \cdot \text{m}^{-2} \cdot \text{d}^{-1}) \times (8 \text{ Cal} \cdot \text{g } \text{C}^{-1}) \times 100}{\text{insolation } (\text{Cal} \cdot \text{m}^{-2} \cdot \text{d}^{-1}).}$

Supplementary Equipment

After being pumped through the IRGA, the sample flow passed through the dew point hygrometer, which was used to determine the water vapor concentration. Both the IRGA and dew point hygrometer produced millivolt output, which was recorded by potentiometric recorders.

Insolation was measured inside a chamber with a dome solarimeter and external to a chamber with a pyroheliometer. The air temperature was monitored within a chamber by means of a thermistor probe. The water temperature was monitored at a lower elevation than the chambers to insure a reading whenever tides inundated the marsh. Water temperature was also

obtained from the inner discharge (A) and control (E) bays of the bay metabolism study (see Fig. II-58). For further detail on equipment use see Hornbeck (1979).

Statistical Analysis

Biomass data was processed and statistics were performed with the use of the SAS package programs (SAS Institute 1979). Biomass and metabolism values were subjected to t-test comparisons of the discharge and intake means as well as comparisons of 1980 means with previous annual means. Significant differences at a 95% confidence level were noted in the results.

Results

Comparison of Intake and Discharge Water Temperatures for 1980

The Crystal River Power Plant intake and discharge water temperatures are presented in Table II-33 and Fig. II-60. Biweekly mean intake and discharge water temperatures were recorded at stations E and A, respectively. The differences between the two means (AT), representing the thermal loading applied to the thermal marsh, are also presented in Table II-33 and Fig. II-60. The mean discharge water temperatures paralleled the mean intake temperature with an average AT of 4.6°C. Outage data for the three units are also presented in Fig. II-60.

Biological Structure of Spartina Marshes for 1980

Mean <u>Spartina</u> stalk density values are presented in Table II-34 and Fig. II-61. The numbers of live <u>Spartina</u> stalks were significantly higher in the discharge marsh during the spring, fall, and winter. The dead stalk densities in the Spartina marshes followed similar decreasing trends

	Bay A	Bay E	
Date	Temperature, °C	Temperature, °C	T, °C
1/11/80	19.0	12.2	6.8
1/18/80	22.3	17.1	5.2
2/02/80	19.7	10.1	9.6
2/25/80	24.4	18.8	5.6
3/08/80	19.8	18.2	1.6
3/21/80	21.8	18.2	3.6
4/05/80	24.0	21.2	2.8
4/18/80	24.2	22.3	1.9
5/11/80	26.8	24.5	2.3
5/30/80	30.5	26.7	3.8
6/17/80	32.1	28.8	3.3
6/30/80	30.5	28.7	1.8
7/17/80	33.4	30.3	3.1
8/03/80	34.0	31.3	2.7
8/28/80	34.5	29.4	5.1
9/12/80	32.1	28.0	4.1
9/28/80	36.4	30.5	5.9
10/15/80	31.1	23.6	7.5
10/30/80	30.1	23.0	7.1
11/15/80	26.0	20.2	5.8
11/29/80	24.1	14.6	9.5
12/17/80	23.6	15.8	7.8

Table II-33. Mean intake (bay E) and discharge (bay A) water temperatures and temperature differences (T) for 1980.

Figure II-60. Intake and discharge water temperatures along with the schedule of power plant operation for 1980. Upper graph represents seasonal averages at monitoring stations A (discharge) and E (intake). The differences between the means (ΔT) are presented on the lower graph. Darkened areas indicate Unit was on line.

Season	Date	Treatment	Live Stalks ^{.m⁻²}	Dead Stalks ^{.m⁻²}	Total Stalks [.] m ⁻²
Winter	1/06/80 1/04/80	Thermal Control	258.7 <u>+</u> 26.8* 134.2 <u>+</u> 10.9	98.2 \pm 10.5 71.1 \pm 10.1	$356.9 \pm 24.6*$ 205.3 ± 11.3
Spring	3/26/80 3/28/80	Thermal Control	214.7 + 32.1* 103.6 + 14.2	$\begin{array}{r} 135.1 + 14.2 \\ 82.2 + 11.9 \end{array}$	349.8 <u>+</u> 32.0* 185.8 <u>+</u> 13.1
Summer	7/11/80 7/04/80	Thermal Control	153.2 ± 11.1 119.1 ± 12.4	$\begin{array}{r} 66.4 + 9.18 \\ 84.0 + 9.73 \end{array}$	$219.6 + 17.3 \\ 203.1 + 17.6$
Fall	10/11/80 10/05/80	Thermal Control	209.3 <u>+</u> 11.5* 114.2 <u>+</u> 10.0	45.8 <u>+</u> 7.28 57.8 <u>+</u> 6.70	$255.1 \pm 14.8*$ 172.0 ± 12.6

Table II-34.	Seasonal means	(<u>+</u> one	standard	error)	of	Spartina	stalk
	density for 198	0.					

Figure II-61. Seasonal means of <u>Spartina</u> stalk densities for 1980. Bars represent <u>+</u> one standard error. Asterisks indicate a significant difference between the means at a 95% confidence level. Seasonal harvests had a sample size of nine.

with the only significant difference occurring in the spring. <u>Spartina</u> total stalk density was greater in the thermal marshes throughout the year and was significantly different in all seasons except summer.

<u>Spartina</u> standing crop weights (aboveground biomass) are presented in Table II-35 and Fig. II-62. There was no significant difference for live <u>Spartina</u> weights during any season in 1980. Trends of live weight reached a minimum in the spring and then increased to a maximum in the fall. The dead <u>Spartina</u> weights for 1980 were nearly constant through the year. The control marshes had a significantly higher mean occurring in the winter. The total live weight of <u>Spartina</u> increased throughout the year in both marshes. The control marsh had a slightly higher mean during all sampling seasons with the winter season being significantly different.

Seasonal means of <u>Spartina</u> specific weights are shown in Table II-36 and Fig. II-63. Specific weight was significantly higher in the control marsh for all four seasons in 1980. The control marsh reached a maximum during the fall while the thermal marsh reached its maximum in the summer.

Seasonal means of <u>Spartina</u> stalk heights are given in Table II-37 and Fig. II-64. Mean values of <u>Spartina</u> stalk height were significantly greater (approximately 15 cm) in the control marsh during each season of 1980. The trend of the stalk heights was to increase in the winter and spring and then level off during the summer and fall.

The mean value of <u>Littorina</u> in the thermal <u>Spartina</u> marsh were significantly greater during the first three seasons of 1980 (Table II-38 and Fig. II-65). The differences in the two marshes varied widely but followed similar patterns, reaching minimum values in the summer and maximum values in the fall. These patterns were repeated for the Spartina

Season	Date	Treatment	Live Biomass g•m ⁻²	Dead Biomass g*m ⁻²	Total Biomass g·m ⁻²
Winter	1/06/80 1/04/80	Thermal Control	485.2 <u>+</u> 48.5 475.9 <u>+</u> 63.3	$178.3 \pm 24.9*$ 376.6 ± 88.6	663.5 <u>+</u> 43.3* 852.5 <u>+</u> 71.4
Spring	3/26/80 3/28/80	Thermal Control	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$322.8 \pm 30.0 \\ 400.4 \pm 64.4$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Summer	7/11/80 7/04/80	Thermal Control	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	322.5 ± 34.0 347.3 ± 47.2	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Fall	10/11/80 10/05/80	Thermal Control	970.2 + 65.8 1063 + 118	289.8 <u>+</u> 42.1 409.8 <u>+</u> 39.7	1260 + 64.7 1472 + 123

Table II-35. Seasonal means (+ one standard error) of <u>Spartina</u> aboveground biomass (after drying at 70°C) for 1980.

Figure II-62. Seasonal means of <u>Spartina</u> aboveground biomass weight per square meter (after drying at 70°C) for 1980. Bars represent <u>+</u> one standard error. Asterisks indicate a significant difference between the means at a 95% confidence level. Seasonal harvests had a sample size of nine.

Season	Date	Treatment	g•stalk ⁻¹
Winter	1/06/80	Thermal	$1.9 \pm 0.06*$
	1/04/80	Control	3.4 ± 0.21
Spring	3/26/80	Thermal	$2.0 \pm 0.23*$
	3/28/80	Control	3.9 ± 0.32
Summer	7/11/80	Thermal	5.0 <u>+</u> 0.38*
	7/04/80	Control	7.6 <u>+</u> 1.0
Fall	10/11/80	Thermal	4.7 <u>+</u> 0.37*
	10/05/80	Control	9.5 <u>+</u> 0.89

Table II-36.	Seasonal	means (+	one	standard	error)	of	specific	weight	of
	Spartina	for 1980.	•						

_

Figure II-63. Seasonal means of <u>Spartina</u> specific weight (weight per stalk) for 1980. Bars represent + one standard error. Asterisks indicate a significant difference between the means at a 95% confidence level. Seasonal harvests had a sample size of nine.

Season	Date	Treatment	Stalk Heights, cm
Winter	1/06/80	Thermal	$42.64 \pm 1.13*$
	1/04/80	Control	55.72 \pm 2.04
Spring	3/26/80	Thermal	46.23 + 0.86*
	3/28/80	Control	61.90 + 1.64
Summer	7/11/80 7/04/80	Thermal Control	$\begin{array}{r} 62.78 \pm 1.50 \\ 70.68 \pm 2.20 \end{array}$
Fall	10/11/80	Thermal	59.06 <u>+</u> 1.63*
	10/05/80	Control	77.14 <u>+</u> 2.38

Table II-37. Seasonal means (+ one standard error) of <u>Spartina</u> stalk height for 1980.

Figure II-64. Seasonal means of <u>Spartina</u> stalk height for 1980. Bars represent <u>+</u> one standard error. Asterisks indicate a significant difference between the means at a 95% confidence level. Seasonal harvests had a sample size of nine.

Season	Date	Treatment	Littorina•m ⁻²	Uca Burrows [•] m ⁻²
Winter	1/06/80 1/04/80	Thermal Control	$\begin{array}{r} 20.9 \\ 1.78 \\ \underline{+} \\ 1.35 \end{array}$	$116.4 + 26.42 \\ 132.4 + 26.18$
Spring	3/26/80 3/28/80	Thermal Control	15.6 + 4.69* 3.11 + 1.30	234.2 <u>+</u> 20.99* 152.0 <u>+</u> 19.83
Summer	7/11/80 7/04/80	Thermal Control	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$148.0 \pm 20.02 \\ 152.0 \pm 18.15$
Fall	10/11/80 10/05/80	Thermal Control	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	156.4 ± 23.76 197.3 ± 14.77

Table II-38.	Seasonal means ((+ one	standard	error)	of Littorina	and	Uca
	burrow density i	ín <u>Spa</u> r	tina mars	shes for	1980.	•	

Figure II-65. Seasonal means of <u>Spartina</u> flowers and <u>Littorina</u> per square meter for 1980. Bars represent <u>+</u> one standard error. Asterisks indicate a significant difference between the means at a 95% confidence level. Seasonal harvests had a sample size of nine.

flowering stalks presented in Table II-39 and Fig. II-65. The only differ ence was that the significant difference occurred in the winter. The <u>Spartina</u> flowers recorded in the winter and spring were reported as drying and decaying flowers from the previous year.

<u>Uca</u> burrow densities are presented in Table II-38 and Fig. II-66. Trends for mean values of <u>Uca</u> burrows per square meter were similar in both marshes. Significantly greater numbers were reported in the thermal marsh during the spring.

Spartina Metabolism Results

Productivity results from the CO₂ chambers are presented in Table II-40 and Figs. II-67 and II-68. Mean <u>Spartina</u> net productivity for the thermal marsh reached a maximum value in the summer and steadily decreased through the rest of the year. The control followed a similar pattern with peak productivity in the summer. Significant differences were recorded during the first three quarters of the year. Net productivity followed the same pattern as gross productivity with significant differences recorded in the winter and spring. <u>Spartina</u> nighttime respiration values remained relatively constant in both marshes with the thermal values slightly higher all year. Significant differences were recorded during the spring and summer. During the spring, values for all three parameters were significantly higher in the thermal marsh than in the control area. This observation is identical with that of the 1978 and 1979 data.

Seasonal means of <u>Spartina</u> P/R ratios are presented in Table II-41 and Fig. II-69. Control marsh P/R was higher throughout the year except during the spring when the thermal marsh value was significantly higher.

Season	Date	Treatment	Flowering <u>Spartina</u> Stalks•m ⁻²
Winter	1/06/80 1/04/80	Thermal Control	7.56 ± 3.09 5.33 ± 2.40
Spring	3/26/80 3/28/80	Thermal Control	3.11 + 1.74 1.33 + 0.94
Summer	7/11/80 7/04/80	Thermal Control	$\begin{array}{c} 0.0 \\ 0.0 \\ \pm \\ 0.0 \end{array} \begin{array}{c} \pm \\ \pm \\ 0.0 \end{array}$
Fall	10/11/80 10/05/80	Thermal Control	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Table II-39. Seasonal means (+ one standard error) of flowering Spartina stalks for 1980.

Figure II-66. Seasonal means of <u>Uca</u> burrows per square meter in <u>Spar-tina</u> marshes for 1980. Bars represent <u>+</u> one standard error. Asterisks indicate a significant difference between the means at a 95% confidence level. Seasonal harvests had a sample size of nine.

Season				Weight		Nighttime	Gross
	Date	Treatment	Insolation, kcal [•] m ⁻² •d ⁻¹	Correction Factor	Net Production, g C°m ⁻² •d ⁻¹	Respiration, g C°m ⁻² •d ⁻¹	Productivity, g C [.] m ⁻² .d ⁻¹
Winter	1/05/80	Thermal	2116	1.738	- 0.643	2.173	1.529
	1/05/80	Thermal	2116	1.216	- 0.314	1.289	0.975
	1/06/80	Thermal	2275	1.234	- 0.387	1.033	0.645
	1/06/80	Thermal	2275	1.325	- 0.231	0.767	0,537
					- 0.394 + 0.08*	1.316 + 0.26	0.922 + 0.19*
	1/03/80	Control	2315	1.992	1.811	1.460	3,271
	1/03/80	Control	2315	1.688	1.723	0,905	2.628
	1/04/80	Control	No data	0.643	0.031	0.944	0.978
	1/04/80	Control	No data	1.550	0.042	2.012	2.829
					0.902 + 0.43	1.330 + 0.23	2.427 + 0.43
Spring	3/26/80	Thermal	3014	0.880	2.963	1.456	4.418
	3/26/80	Thermal	3014	0.904	3.612	2.054	5.666
	3/27/80	Thermal	2351	1.073	3.664	2.487	6.152
	3/27/80	Thermal	2351	1.387	3.791	3.253	7.043
					3.508 + 0.16*	2.313 + 0.21	5.820 + 0.47*
	3/28/80	Control	3098	0,557	1.371	1.382	2.753
	3/28/80	Control	3098	0.935	1.012	1.651	2.663
					1.192 + 0.13	1.517 + 0.10	2.708 + 0.03
Summer	7/11/80	Thermal	2867	1.040	2.476	2.225	4.701
	7/11/80	Thermal	2867	1.401	2.724	1,947	4.671
					2.600 + 0.09*	2.086 + 0.10*	4.686 + 0.01

Table 11-40. Seasonal means (+ one standard error) of <u>Spartina</u> metabolism for 1980, normalized for weight.

Season	Date	Treatment	Insolation, kcal•m ⁻² •d ⁻¹	Weight Correction Factor	Net Production, g C [•] m ⁻² •d ⁻¹	Nighttime Respiration, g C°m ⁻² •d ⁻¹	Gross Productivity, g C [.] m ⁻² .d ⁻¹
Summer	7/04/80	Control	3657	0.899	2.986	1.848	4.834
	7/04/80	Control	3657	0.707	5.068	1,369	6.437
	7/05/80	Control	3725	0.839	4.261	1.333	5,594
	7/05/80	Control	3725	0.753	3.872	1.404	5.276
					4.047 + 0.28	1.489 + 0.10	5.535 + 0.29
Fall	10/11/80	Thermal	2621	1.340	1.931	1.761	3,692
	10/11/80	Thermal	2621	1.256	0.973	1.383	2,356
	10/12/80	Thermal	3009	0.908	2.803	2.068	4.871
	10/12/80	Thermal	3009	0.926	3.419	1.852	5.271
					2.282 + 0.92	1.766 + 0.25	4.048 + 1.14
	10/05/80	Control	2003	0.545	2.381	8.893	3.274
	10/05/80	Control	2003	1.241	3.601	1.807	5.408
	10/06/80	Control	2951	1.000	5.975	1.840	7.815
	10/06/80	Control	2951	1.000	2.787	1.816	4.603
					3,686 + 1,39	1,589 + 0,40	5,275 + 1,65

*Indicates a significant difference between the means at a 95% confidence level.

Figure II-67. Seasonal means for <u>Spartina</u> gross productivity for 1980. Bars represent <u>+</u> one standard error. Asterisks indicate a significant difference between the means at a 95% confidence level. Seasonal harvests had a sample size of three.

Figure II-68. Seasonal means for <u>Spartina</u> net productivity and nighttime respiration for 1980. Bars represent <u>+</u> one standard error. Asterisks indicate a significant difference between the means at a 95% confidence level. Seasonal harvests had a sample size of three.

Season	Date	Treatment	P/R Ratio
Winter	1/06/80	Thermal	0.406 ± 0.03
	1/04/80	Control	1.117 ± 0.43
Spring	3/26/80	Thermal	$1.304 \pm 0.16*$
	3/28/80	Control	0.901 ± 0.10
Summer	7/11/80	Thermal	0.940 ± 0.06
	7/04/80	Control	1.591 ± 0.32
Fall	10/11/80	Thermal	1.125 ± 0.21
	10/05/80	Control	1.680 ± 0.33

Table II-41. Seasonal means (<u>+</u> one standard error) of <u>Spartina</u> P/R ratios for 1980.

*Indicates a significant difference between the means at a 95% confidence level.

Figure II-69. Seasonal means for <u>Spartina</u> P/R ratios for 1980. Bars represent <u>+</u> one standard error. Asterisks indicate a significant difference between the means at a 95% confidence level. Seasonal harvests had a sample size of three.

Biological Structure of Juncus Marshes

Mean values of <u>Juncus</u> shoot densities are given in Table II-42 and Fig. II-70. As in the <u>Spartina</u> marsh, mean values for <u>Juncus</u> live shoot densities were greater in the thermally affected marsh than in the control marsh. Significant differences were recorded during the winter quarter. The dead shoot densities for both marshes remained relatively constant with the thermal marsh value significantly higher for the first three seasons of the year. Mean total shoot densities were greater in the thermally affected marsh for every season of 1980 with significant differences reported during the winter and summer.

As shown in Table II-43 and Fig. II-71, mean values of <u>Juncus</u> live biomass weights were nearly constant throughout the year. The dead and total <u>Juncus</u> weights also remained nearly constant throughout the year. Higher weights in the thermal marsh were reported in the spring and summer for dead Juncus and summer for the total Juncus weights.

Mean specific weights for <u>Juncus</u> were significantly higher in the control marsh during the winter and fall while the thermal marsh values had slightly higher means during the remaining seasons (Table II-44 and Fig. II-72).

Seasonal means of <u>Juncus</u> shoot heights were significantly higher in the control marsh compared to the thermal marsh during spring, summer, and fall (Table II-45 and Fig. II-73). Minimum values occurred for both marshes in the spring and maximum values in the fall. Flowering <u>Juncus</u> shoots were observed during the spring in both marshes with a mean value of about 1 flower·m⁻² (Table II-46 and Fig. II-74).

As shown in Table II-47 and Fig. II-74, <u>Littorina</u> density in the thermal marsh fluctuated seasonally while the control marsh density

Season	Date	Treatment	Live Shoots•m ⁻²	Dead Shoots•m ⁻²	Total Shoots'm ⁻²
Winter	1/06/80 1/04/80	Thermal Control	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	580.0 <u>+</u> 51.6* 304.0 <u>+</u> 57.7	1350 <u>+</u> 123* 799.2 <u>+</u> 85.5
Spring	3/26/80 3/28/80	Thermal Control	765.6 ± 151 688.0 ± 101	624.0 + 70.1* 270.4 + 49.6	1390 + 176 958.4 $+ 125$
Summer	7/11/80 7/04/80	Thermal Control	560.6 ± 49.5 508.8 ± 45.1	587.4 + 26.1* 272.0 + 39.9	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Fall	10/11/80 10/05/80	Thermal Control	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	530.4 + 67.9 487.2 + 66.9	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Table II-42. Seasonal means (<u>+</u> one standard error) of <u>Juncus</u> shoot densities for 1980.

Figure II-70. Seasonal means for <u>Juncus</u> shoot densities for 1980. Bars represent <u>+</u> one standard error. Asterisks indicate a significant difference between the means at a 95% confidence level. Seasonal harvests had a sample size of five.

Season	Date	Treatment	Live Biomass g•m ⁻²	Dead Biomass g·m ⁻²	Total Biomass g·m ⁻²
Winter	1/06/80 1/04/80	Thermal Control	$1281.9 + 178.3 \\ 1069.0 + 92.4$	$1291.4 + 165.0 \\ 1212.8 + 134.6$	2573.3 + 331.6 2281.8 + 217.1
Spring	3/26/80 3/28/80	Thermal Control	1099.0 + 135.2 945.6 + 215.7	$\begin{array}{r} 1432.8 \pm 157.5 * \\ 758.5 \pm 117.7 \end{array}$	$2531.8 + 271.1 \\ 1704.1 + 327.7$
Summer	7/11/80 7/04/80	Thermal Control	$\frac{1164.0 + 152.7}{1022.0 + 69.9}$	$1519.0 \pm 82.2*$ 808.0 ± 115.3	$\begin{array}{r} 2683.0 + 230.5 \\ 1831.0 + 174.0 \end{array}$
Fall	10/11/80 10/05/80	Thermal Control	1130.0 <u>+</u> 140.4 1569.0 <u>+</u> 207.6	1094.0 + 170.3 1369.0 + 229.3	$2224.0 + 280.9 \\ 2938.0 + 414.9$

Table II-43. Seasonal means (+ one standard error) of <u>Juncus</u> aboveground biomass (after drying at 70°C) for 1980.

Season	Date	Treatment	g•stalk ⁻¹
Winter	1/06/80	Thermal	$1.7 \pm 0.08*$
	1/04/80	Control	2.2 ± 0.11
Spring	3/26/80	Thermal	1.9 ± 0.68
	3/28/80	Control	1.4 ± 0.27
Summer	7/11/80	Thermal	2.2 + 0.41
	7/04/80	Control	2.0 + 0.08
Fall	10/11/80	Thermal	$1.9 \pm 0.17*$
	10/05/80	Control	2.5 ± 0.03

Table II - 44.	Seasonal means (+ one standard error) of specific weight	s of
	Juncus for 1980.	

Figure II-72. Seasonal means for <u>Juncus</u> specific weight (weight per shoot) for 1980. Bars represent <u>+</u> one standard error. Asterisks indicate a significant difference between the means at a 95% confidence level. Seasonal harvests had a sample size of five.

Season	Date	Treatment	Shoot Heights, cm
Winter	1/06/80	Thermal	94.90 <u>+</u> 1.55
	1/04/80	Control	97.69 <u>+</u> 1.91
Spring	3/26/80	Thermal	78.77 <u>+</u> 1.25*
	3/28/80	Control	84.27 <u>+</u> 1.74
Summer	7/11/80	Thermal	94.64 \pm 1.32*
	7/04/80	Control	103.3 \pm 1.61
Fall	10/11/80	Thermal	98.72 $+$ 1.52*
	10/05/80	Control	116.2 $+$ 1.73

Table II-45. Seasonal means (+ one standard error) of Juncus shoot heights for 1980.

Figure II-73. Seasonal means of <u>Juncus</u> shoot heights for 1980. Bars represent <u>+</u> one standard error. Asterisks indicate a significant difference between the means at a 95% confidence level. Seasonal harvests had a sample size of five.

Season	Date	Treatment	Flowering <u>Juncus</u> Plants'm ⁻²
Winter	1/06/80 1/04/80	Thermal Control	0.0 ± 0.0 0.0 ± 0.0
Spring	3/26/80 3/28/80	Thermal Control	0.8 ± 0.8 1.6 ± 1.0
Summer	7/11/80 7/04/80	Thermal Control	$\begin{array}{c} 0.0 \pm 0.0 \\ 0.0 \pm 0.0 \end{array}$
Fall	10/11/80 10/05/80	Thermal Control	$\begin{array}{c} 0.0 + 0.0 \\ 0.0 + 0.0 \end{array}$

Table II-46. Seasonal means (<u>+</u> one standard error) of flowering <u>Juncus</u> plants for 1980.

.

Figure II-74. Seasonal means of <u>Juncus</u> flowers and <u>Littorina</u> per square meter for 1980. Bars represent <u>+</u> one standard error. Asterisks indicate a significant difference between the means at a 95% confidence level. Seasonal harvests had a sample size of five.

Season	Date	Treatment	Littorina [•] m ⁻²	<u>Uca</u> Burrows·m ⁻²
Winter	1/06/80 1/04/80	Thermal Control	$\begin{array}{r} 23 + 7.9 \\ 0.8 + 0.8 \end{array}$	$\begin{array}{r} 191.2 + 28.4* \\ 88.0 + 18.6 \end{array}$
Spring	3/26/80 3/28/80	Thermal Control	9.6 ± 4.5 3.2 ± 0.8	$232.8 + 21.4 \\ 222.4 + 10.2$
Summer	7/11/80 7/04/80	Thermal Control	13 + 2.1* 4.0 + 2.2	$449.7 \pm 65.6*$ 252.0 ± 46.7
Fall	10/11/80 10/05/80	Thermal Control	8.8 ± 2.7 7.6 ± 5.0	$182.4 + 53.6 \\ 137.6 + 19.1$

Table II-47. Seasonal means (+ one standard error) of <u>Littorina</u> and <u>Uca</u> burrow density in <u>Juncus</u> marshes for 1980.

gradually increased. <u>Littorina</u> densities in the thermal marsh were significantly higher during the winter and summer seasons.

Mean values of <u>Uca</u> burrow densities are shown in Table II-47 and Fig. II-75. Both thermal and control marshes had their greatest numbers of <u>Uca</u> burrows during the summer. The thermal marsh densities were consistently higher throughout the year and significantly higher during the winter and summer seasons.

Juncus Metabolism Results

Results of the <u>Juncus</u> metabolism analysis are presented in Table II-48 and Figs. II-76 and II-77. Mean values of net productivity in the control marsh were higher than those of the discharge marsh during the three warmer seasons of the year. Nighttime respiration values remained fairly uniform with minimum values during the winter. Gross productivity values fluctuated seasonally in both marshes, with highest values recorded during the fall in the control marsh and during the spring in the discharge marsh. There were no significant differences reported between the discharge and intake means for the three metabolism parameters during 1980.

Mean values of <u>Juncus</u> P/R ratios are presented in Table II-49 and Fig. II-78. The mean values were greater than unity throughout the year, with the control marsh having a slightly higher mean for the latter three seasons of 1980. Significant differences were recorded during the winter and summer.

Comparisons of 1980 Data with Previous Years

A major energy inflow to the discharge marshes is the thermal effluent. The observed seasonal means of the intake and discharge water

Figure II-75. Seasonal means of Uca burrows per square meter in Juncus marshes for 1980. Bars represent + one standard error. Asterisks indicate a significant difference between the means at a 95% confidence level. Seasonal harvests had a sample size of five.

Season	Date	Treatment	Insolation, kcal*m ⁻² •d ⁻¹	Weight Correction Factor	Net Production, g C°m ⁻² •d ⁻¹	Nighttime Respiration, g C°m ^{-2.} d ⁻¹	Gross Productivity, g C°m ⁻² °d ⁻¹
Winter	1/05/80	Thermal	2116	0.828	6.135	0.917	7.053
	1/05/80	Thermal	2116	0.968	6.040	1.375	7.415
	1/06/80	Thermal	2275	0.723	4.517	1.102	5,619
	1/06/80	Thermal	2275	1.505	7.027	1.451	8.478
					5.930 + 0.90	1.211 <u>+</u> 0.21	7.141 + 1.02
	1/03/80	Control	2315	0.868	3,197	1.394	4.591
	1/03/80	Control	2315	1,279	6.027	2.023	8.050
	1/04/80	Control	No data	0,968	1.019	1.652	2.672
	1/04/80	Control	No data	1.220	1.031	1,967	2,998
	., . ,				2.819 + 2.05	1.759 + 0.25	4.578 + 2.13
Spring	3/26/80	Thermal	3014	1.501	5.210	3.395	8,605
. 0	3/26/80	Thermal	3014	1.065	5.860	2.309	8.062
	3/27/80	Thermal	2351	1,290	7.171	4.630	11.801
	3/27/80	Thermal	2351	0.749	5.012	2.170	7.182
					5.813 + 0.84	3.126 + 0.99	8.913 + 1.74
	3/28/80	Control	3098	0.906	7,147	2,566	9,712
	3/28/80	Control	3098	0.571	6.055	1.900	7,956
					6.601 + 0.55	2.233 + 0.33	8.834 + 0.88
Summer	7/11/80	Thermal	2867	0.836	3.005	2.498	5,503
	7/11/80	Thermal	2867	0.744	3.890	1,986	5.875
	7/12/80	Thermal	2418	1.271	3.871	3,355	7.227
					3.589 + 0.41	2.613 + 0.57	6.202 + 0.74

Table 11-48. Seasonal means (+ one standard error) for Juncus metabolism values for 1980, normalized for weight.

Table I	-48	(Cont'	d).
---------	-----	--------	-----

Season	Date	Treatment	Insolation, kcal•m ⁻² •d ⁻¹	Weight Correction Factor	Net Production, g C [.] m ⁻² .d ⁻¹	Nighttime Respiration, g C [•] m ⁻² •d ⁻¹	Gross Productivity, g C [*] m ⁻² *d ⁻¹
 Summer	7/04/80	Control	3657	1.014	4.668	1.749	6.418
	7/04/80	Control	3657	1.211	6.340	2.705	9.045
	7/05/80	Control	3725	0.809	5.440	1,540	7.032
	7/05/80	Control	3725	0.971	6.970	2.441	9.411
					5.855 + 0.88	2.109 + 0.48	7.977 + 1.28
Fall	10/11/80	Thermal	2621	1.261	5,517	3.004	8,521
	10/11/80	Thermal	2621	0.759	3.220	1.548	4.768
	10/12/80	Thermal	3009	1.503	5,092	3.011	8,103
	10/12/80	Thermal	3009	0.812	0.362	2.416	2.779
					3.548 + 2.03	2.495 + 0.60	6.043 + 2.38
	10/05/80	Control	2003	1.526	14.376	3,936	18,312
	10/05/80	Control	2003	0.945	4.337	1.952	6.289
	10/06/80	Control	2951	1.000	10.468	2.382	12.850
	10/06/80	Control	2951	1.000	8.487	3.083	11.570
					9.417 + 3.62	2.838 + 0.75	12.255 + 4.28

*Indicates a significant difference between the means at a 95% confidence level.

1980

Figure II-76.

• Seasonal means of <u>Juncus</u> gross productivity for 1980. Bars represent <u>+</u> one standard error. Asterisks indicate a significant difference between the means at a 95% confidence level. Seasonal harvests had a sample size of five.

Figure II-77. Seasonal means of <u>Juncus</u> net productivity and nighttime respiration for 1980. Bars represent <u>+</u> one standard error. Asterisks indicate a significant difference between the means at a 95% confidence level. Seasonal harvests had a sample size of three.

Season	Date	Treatment	P/R Ratio
Winter	1/06/80	Thermal	3.499 <u>+</u> 0.59*
	1/04/80	Control	1.519 <u>+</u> 0.62
Spring	3/26/80	Thermal	1.839 + 0.74
	3/28/80	Control	1.993 + 0.10
Summer	7/11/80	Thermal	1.016 + 0.15*
	7/04/80	Control	1.608 + 0.19
Fall	10/11/80 10/05/80	Thermal Control	$\begin{array}{r} 1.220 + 0.38 \\ 2.128 + 0.42 \end{array}$

Table II-49. Seasonal means (<u>+</u> one standard error) of <u>Juncus</u> P/R ratios for 1980.

_

*Indicates a significant difference between the means at a 95% confidence level.

Figure II-78. Seasonal means of <u>Juncus</u> P/R ratios for 1980. Bars represent <u>+</u> one standard error. Asterisks indicate a significant difference between the means at a 95% confidence level. Seasonal harvests had a sample size of three.

temperatures during the preoperational and postoperational years are presented in Table II-50 and Fig. II-79. The AT values and the on-line times of Units 1, 2, and 3 are also presented. Plant outage data were not available prior to 1977. AT was 4°C or greater during the time when all three units are on line.

Spartina Comparisons

Comparisons of 1980 <u>Spartina</u> biomass parameters with previous years results are presented in this section. The lack of a sufficient data base for 1973 (no standard errors on mean values for certain parameters) precludes a complete comparison.

1980 Data Compared with Preoperational Data

Comparisons between 1973 and 1980 means of live Spartina stalk densities are presented in Table II-51 and Fig. II-80. The 1973 control Spartina stalk densities were approximately 70% greater than 1980 values, while 1980 thermal values remained almost equal to those of the preoperational data. This is also seen in Fig. II-81, where 1980 thermal and control dead stalk densities are compared to 1973 data. Spartina live and dead weight values are shown in Table II-52 and Figs. II-82 and II-83. Live weights for 1980 are significantly higher than those of 1973 (thermal and control) during all seasons except spring (thermal). Dead weight values of Spartina show significant differences in the thermal marsh during the winter, summer, and fall. Although no standard errors were available to perform necessary statistics, 1973 mean values of specific weight (Table II-53 and Fig. II-84) and stalk heights (Table II-54 and Fig. II-85) for the control marsh suggest that both sets of values were significantly lower than the 1980 values. These differences observed in the control areas contrast with the similar values recorded in the

	Wir	nter		Spr	ring		Sur	າກອຕ		Fa	all	
	Discharge	Intake	ΔT	Discharge	Intake	ΔT	Discharge	Intake	ΔT	Discharge	Intake	ΔT
1973	20.5	13.6	6.5	32.5	29.0	3.5	33.0	29.5	3.5	22.0	19.0	3.0
1977		o data		31.0	tino d	ata	34.0	29.0	5.0	27.0	22.0	5.0
T 1973/1977	+			- 1.5	+		+ 1.0	- 0.5	+ 1.5	+ 5.0	- 3.0 -	+ 2.0
1978	18.0	14.0	4.0	30.0	26.0	4.0	32.0	29.0	3.0	27.0	21.0	6.0
T 1973/1978	- 2.5	+ 0.4	- 2.5	- 2.5	- 3.0	+ 0.5	- 1.0	- 0.5	- 0.5	+ 5.0	+ 2.0 -	+ 3.0
1979	19.5	13.0	6.5	26.0	20.0	6.0	32.5	30.0	2.5	27.0	22.0	5.0
T 1973/1979	- 1.0	- 0.6	0.0	- 6,5	- 0.0	+ 2.5	- 0.5	+ 0.5	- 1.0	+ 5.0	+ 3.0 -	+ 2.0
1980	19.0	12.2	6.8	21.8	18,2	3.6	33.4	30.3	3.1	30.1	23.0	7.1
T 1973/1980	- 1.5	- 1.4	+ 0.3	- 10.7	- 10.8	+ 0.1	+ 0.4	+ 0.8	- 0.4	+ 8.1	+ 4.0 -	+ 4.1

Table 11-50. Mean seasonal discharge and intake water temperatures and the change in temperature (∆T) for 1973-1980.

graph represents seasonal averages at monitoring stations A (discharge) and E (intake). The differences between the means (Δ T) are presented on the lower graph. Striped areas indicate Unit was on line.

Season	Year	Treatment	Live Stalks•m ⁻²	Dead Stalks [.] m ⁻²
Winter	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	$ \begin{array}{r} 185 + 25 \\ No data \\ 230 + 24.4 \\ 229 + 15.3 \\ 259 + 26.8 \end{array} $	$ \begin{array}{r} 140 + 15* \\ \text{No data} \\ 85 + 5.1 \\ 101 + 12.6 \\ 98.2 + 10.5 \end{array} $
	1973 1977 1978 1979 1980	Control Control Control Control Control	$ \begin{array}{r} 145 + 15 \\ No \ data \\ 77 + 13.8* \\ 115 + 8.96 \\ 134 + 10.9 \end{array} $	$ \begin{array}{r} 100 + 10 \\ No \ data \\ 46 + 5.7 \\ 70.7 + 10.7 \\ 71.1 + 10.1 \end{array} $
Spring	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	$ \begin{array}{r} 195 + 20 \\ 146 + 8.27 \\ 190 + 18.3 \\ 239 + 20.7 \\ 215 + 32.1 \end{array} $	$ \begin{array}{r} 110 + 15 \\ 166 + 9.55 \\ 115 + 9.5 \\ 165 + 18.4 \\ 135 + 14.2 \\ \end{array} $
	1973 1977 1978 1979 1980	Control Control Control Control Control	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{r} 85 + 8 \\ 101 + 12.3 \\ 96 + 8.7 \\ 125 + 14.5* \\ 82.2 + 11.9 \end{array}$
Summer	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	$200 + 18* \\ 126 + 5.5* \\ 144 + 11 \\ 157 + 13.3 \\ 153 + 11.1$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	1973 1977 1978 1979 1980	Control Control Control Control Control	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Fall	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	$ \begin{array}{r} 175 + 15 \\ 97.5 + 7.17* \\ 154 + 10.6* \\ 179 + 24.7 \\ 209 + 11.5 \\ \end{array} $	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	1973 1977 1978 1979 1980	Control Control Control Control Control	$ \begin{array}{r} 190 + 10* \\ 95.1 + 8.45 \\ 120 + 9 \\ 121 + 13.1 \\ 114 + 10.0 \\ \end{array} $	78 + 20 $14.0 + 7.65*$ $63 + 10.4$ $89.8 + 12.0*$ $57.8 + 6.70$

Table II-51. Comparison of <u>Spartina</u> stalk densities for 1980 with previous year's seasonal means (<u>+</u> one standard error).

Figure II-80. Comparison of preoperational (1973) with 1977-1980 seasonal means for <u>Spartina</u> live stalk densities. Bars represent <u>+</u> one standard error. Asterisks indicate that a significant difference at a 95% confidence level was recorded when compared to the 1980 seasonal means.

Figure II-81. Comparison of preoperational (1973) with 1977—1980 seasonal means for <u>Spartina</u> dead stalk densities. Bars represent <u>+</u> one standard error. Asterisks indicate that a significant difference at a 95% confidence level was recorded when compared to the 1980 seasonal means.

Season	Year	Treatment	Live Biomass g•m ⁻²	Dead Biomass g·m ⁻²
Winter	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	335 <u>+</u> 25* No data 283 <u>+</u> 15.3* 357 <u>+</u> 41.9* 178 <u>+</u> 24.9
	1973 1977 1978 1979 1980	Control Control Control Control Control	135 <u>+</u> 15* No data 250 <u>+</u> 55.2* 413 <u>+</u> 74.9 476 <u>+</u> 63.3	225 <u>+</u> 20 No data 321 <u>+</u> 38.3 871 <u>+</u> 178* 377 <u>+</u> 88.6
Spring	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	$\begin{array}{r} 225 + 10 \\ 395 + 31 \\ 312 + 24.8 \\ 272 + 23.0* \\ 412 + 38.5 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	1973 1977 1978 1979 1980	Control Control Control Control Control	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Summer	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	$\begin{array}{r} 420 + 25* \\ 609 + 41.9 \\ 424 + 32.3* \\ 472 + 37.9* \\ 754 + 57.1 \end{array}$	$\begin{array}{r} 450 + 24* \\ 290 + 29 \\ 704 + 45.3* \\ 586 + 67.3* \\ 323 + 34.0 \end{array}$
	1973 1977 1978 1979 1980	Control Control Control Control Control	530 + 35* 510 + 32.1* 453 + 46.8* 374 + 46.2* 868 + 90.3	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Fall	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	560 + 40* $564 + 42.8*$ $695 + 47.8*$ $720 + 72.3*$ $970 + 65.8$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	1973 1977 1978 1979 1980	Control Control Control Control Control	$\begin{array}{r} 460 + 60* \\ 786 + 76.8 \\ 1140 + 149 \\ 626 + 65.8* \\ 1060 + 118 \end{array}$	275 + 30* $245 + 26.4*$ $518 + 76.1$ $500 + 80.6$ $410 + 39.7$

Table II-52.	Comparison of Spartina biomass weights for 1980 with
	previous year's seasonal means (+ one standard error).

recorded when compared to the 1980 seasonal means.

aboveground dead biomass weights. Bars represent <u>+</u> one standard error. Asterisks indicate that a significant difference at a 95% confidence level was recorded when compared to the 1980 seasonal means.

Season	Year	Treatment	Specific Weight gʻstalk ⁻¹
Winter	1973	Thermal	1.5
	1977	Thermal	No data
	1978	Thermal	1.4 \pm 0.07*
	1979	Thermal	1.4 \pm 0.17*
	1980	Thermal	1.9 \pm 0.06
	1973	Control	1.5
	1977	Control	No data
	1978	Control	3.8 \pm 0.90
	1979	Control	3.5 \pm 0.45
	1980	Control	3.4 \pm 0.21
Spring	1973	Thermal	2.0
	1977	Thermal	2.8 \pm 0.10*
	1978	Thermal	1.8 \pm 0.18
	1979	Thermal	1.1 \pm 0.04*
	1980	Thermal	2.0 \pm 0.23
	1973	Control	1.9
	1977	Control	6.0 $+$ 0.7*
	1978	Control	2.8 $+$ 0.32*
	1979	Control	2.0 $+$ 0.17*
	1980	Control	3.9 $+$ 0.32
Summer	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	$\begin{array}{r} - \\ 2.7 \\ 4.9 + 0.2 \\ 3.0 + 0.19* \\ 3.0 + 0.14* \\ 5.0 + 0.38 \end{array}$
	1973	Control	2.9
	1977	Control	8.4 \pm 0.40
	1978	Control	6.8 \pm 0.51
	1979	Control	5.4 \pm 0.89
	1980	Control	7.6 \pm 1.00
Fall	1973	Thermal	3.0
	1977	Thermal	5.6 \pm 0.2*
	1978	Thermal	4.8 \pm 0.58
	1979	Thermal	4.4 \pm 0.47
	1980	Thermal	4.7 \pm 0.37
	1973	Control	2.7
	1977	Control	8.4 \pm 0.60
	1978	Control	9.4 \pm 0.78
	1979	Control	5.6 \pm 0.76*
	1980	Control	9.5 \pm 0.89

Table II-53.	Comparison of Spartina specific weights for 1980 with
	previous year's seasonal means (+ one standard error).

Figure II-84. Comparison of preoperational (1973) with 1977—1980 seasonal means for <u>Spartina</u> specific weights. Bars represent <u>+</u> one standard error. Asterisks indicate that a significant difference at a 95% confidence level was recorded when compared to the 1980 seasonal means.

Season	Year	Treatment	Stalk Heights, cm
Winter	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	36 No data 42.0 ± 1.05 $36.4 \pm 1.14*$ 42.6 ± 1.13
	1973 1977 1978 1979 1980	Control Control Control Control Control	37 No data 59.0 \pm 2.63 55.7 \pm 1.78 55.7 \pm 2.04
Spring	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	5360.0 + 0.9*51.5 + 0.69*41.6 + 0.62*46.2 + 0.86
	1973 1977 1978 1979 1980	Control Control Control Control Control	$\begin{array}{r} 48\\ 86.0 + 1.5*\\ 70.1 + 1.60*\\ 55.9 + 1.29*\\ 61.9 + 1.64 \end{array}$
Summer	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	57 73.0 + 1.8* 71.4 + 0.82* 57.2 + 0.86* 62.8 + 1.50
	1973 1977 1978 1979 1980	Control Control Control Control Control	55 $83.0 \pm 2.8*$ $84.7 \pm 2.67*$ 70.0 ± 2.03 70.7 ± 2.20
Fall	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	$\begin{array}{r} 45 \\ 80.0 + 1.7* \\ 63.0 + 1.53 \\ 50.0 + 1.49* \\ 59.1 + 1.63 \end{array}$
	1973 1977 1978 1979 1980	Control Control Control Control Control	$\begin{array}{r} 44\\ 92.0 + 1.4*\\ 80.0 + 2.49\\ 60.1 + 1.95*\\ 77.1 + 2.38 \end{array}$

Table II-54. Comparison of <u>Spartina</u> stalk heights for 1980 with previous year's seasonal means (\pm one standard error).

thermally affected area. Of the remaining biomass parameters, only the 1980 thermal <u>Littorina</u> mean (Table II-55 and Fig. II-86) appears to be higher than that of 1973. On the other hand, the number of <u>Uca</u> burrows in 1980 was lower than in 1973 (Table II-56 and Fig. II-87).

1980 Data Compared with 1977-1979 Data

Compared with 1980 data, 1977, 1978, and 1979 means for live weights were significantly different for the winter, summer, and fall thermal marsh and for the summer control marsh (Table II-52 and Fig. II-82). Dead weights and live and dead densities showed a large number of significant differences during the summer and fall (thermal and control) as seen on Tables II-51 and II-52. Specific weights were significantly different during the spring in both thermal and control marshes and during summer and winter in the thermal area (Table II-53). Stalk heights were significantly different in all seasons except winter (thermal and control) when compared with 1980 data (Table II-54). Flowering stalks were significantly different during the winter at both marshes (Table II-57 and Fig. II-88). This is due to the fact that the number of flowers was never recorded during the winter prior to 1980. This was also accompanied by significantly higher flower values during the fall in the remaining fauna parameters. Uca values showed significant differences during the summer (control) and fall (thermal) (Table II-55) while Littorina densities showed significant differences during the winter (thermal) and fall (thermal and control) (Table II-56).

<u>Spartina</u> live stalk density (Fig. II-80) in the thermal marsh remained relatively unchanged while the control values dropped considerably from their preoperational levels. The mean <u>Spartina</u> live weight for both thermal and control marshes appeared to gradually increase with

Season	Year	Treatment	Littorina ^{•m⁻²}
Winter	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	3.6 No data 1.1 \pm 0.74* 8.9 \pm 2.81* 20.9 \pm 2.56
	1973 1977 1978 1979 1980	Control Control Control Control Control	5.0 No data 0.6 <u>+</u> 0.57 5.7 <u>+</u> 1.92 1.8 <u>+</u> 1.35
Spring	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	$\begin{array}{r} 4.0 \\ 2.0 + 0.8* \\ 8.0 + 3.00 \\ 6.7 + 2.75 \\ 15.6 + 4.69 \end{array}$
	1973 1977 1978 1979 1980	Control Control Control Control Control	$\begin{array}{r} 1.7 \\ 0.0 + 0.0* \\ 0.4 + 0.36 \\ 4.4 + 1.41 \\ 3.11 + 1.30 \end{array}$
Summer	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	2.2 8.0 $+$ 4.2 1.6 $+$ 0.88* 12.4 $+$ 4.34 10.0 $+$ 2.40
	1973 1977 1978 1979 1980	Control Control Control Control Control	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Fall	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	1973 1977 1978 1979 1980	Control Control Control Control Control	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Table II-55. Comparison of <u>Littorina</u> densities in <u>Spartina</u> marshes for 1980 with previous year's seasonal means (<u>+</u> one standard error).

Season	Year	Treatment	Uca Burrows.m ⁻²
Winter	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	278 No data 90 <u>+</u> 13.5 220 <u>+</u> 16.7* 116 <u>+</u> 26.4
	1973 1977 1978 1979 1980	Control Control Control Control Control	413 No data 101 \pm 10.9 104 \pm 15.4 132 \pm 26.2
Spring	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	$\begin{array}{r} 332 \\ 97.5 + 16.1* \\ 303 + 41.7 \\ 301 + 27.1 \\ 234 + 21.0 \end{array}$
	1973 1977 1978 1979 1980	Control Control Control Control Control	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Summer	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	No data No data 267 <u>+</u> 29.3* 167 <u>+</u> 21.6 148 <u>+</u> 20.0
	1973 1977 1978 1979 1980	Control Control Control Control Control	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Fall	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	1973 1977 1978 1979 1980	Control Control Control Control Control	$\begin{array}{r} 634 \\ 207 + 22 \\ 278 + 18.9* \\ 212 + 32.7 \\ 197 + 14.8 \end{array}$

Table II-56. Comparison of <u>Uca</u> burrow densities in <u>Spartina</u> marshes for 1980 with previous year's seasonal means (<u>+</u> one standard error).

Figure II-87. Comparison of preoperational (1973) with 1977—1980 seasonal means of <u>Uca</u> burrow densities in the <u>Spartina</u> marshes. Bars represent <u>+</u> one standard error. Asterisks indicate that a significant difference at a 95% confidence level was recorded when compared to the 1980 seasonal means.

Season	Year	Treatment	Flowering <u>Spartina</u> Stalks [.] m ⁻²
Winter	1973	Thermal	No data
	1977	Thermal	No data
	1978	Thermal	O*
	1979	Thermal	7.56 <u>+</u> 3.09
	1973	Control	No data
	1977	Control	No data
	1978	Control	0*
	1979	Control	0*
	1980	Control	5-33 + 2-40
Spring	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	No data 0 0 3.11 + 1.74
	1973	Control	No data
	1977	Control	0
	1978	Control	0
	1979	Control	0
	1980	Control	1.33 + 0.94
Summer	1973	Thermal	No data
	1977	Thermal	O
	1978	Thermal	O
	1979	Thermal	O
	1980	Thermal	O
	1973	Control	No data
	1977	Control	O
	1978	Control	O
	1979	Control	O
	1980	Control	O
Fall	1973	Thermal	No data
	1977	Thermal	7.1 + 2.1*
	1978	Thermal	2.2 + 1.78*
	1979	Thermal	7.11 + 2.81*
	1980	Thermal	36.0 + 2.91
	1973	Control	No data
	1977	Control	11.1 <u>+</u> 2.9*
	1978	Control	13.8 <u>+</u> 4.01
	1979	Control	4.88 <u>+</u> 2.19*
	1980	Control	24.4 <u>+</u> 3.01

Table II-57. Comparison of <u>Spartina</u> flowering stalk densities for 1980 with previous year's seasonal means (<u>+</u> one standard error).

time and showed few significant differences between the two marshes (Fig. II-82). Mean specific weight (Fig. II-84) and stalk height (Fig. II-85) values in the thermal marsh appeared to be relatively constant, but the control values were higher than those of the thermal marsh.

Spartina Metabolism Comparisons

The comparisons of 1980 Spartina metabolism values with previous years data are presented in Table II-58 and Figs. II-89, II-90, and II-91. Net productivity values were found to be significantly different in both thermal and control marshes during the spring of 1973 when compared to 1980. Due to an unusually low net productivity value during winter 1980 in the thermal marsh (-0.39 g $C \cdot m^{-2} \cdot d^{-1}$), 1978 and 1979 means compared to that value were found to be significantly higher. Winter and summer nighttime respiration values of 1978 were found to be significantly lower and significantly higher, respectively, in the control marsh when compared to 1980. Spring gross productivity values for 1973 were significantly lower than 1980 means in the discharge marsh and significantly higher in the control marsh. With all three metabolism parameters, no significant differences were recorded during the fall season between 1980 and previous years. As presented in Table II-59 and Fig. II-92, 1980 P/R means for both marshes remained relatively similar with those of previous years. The significant differences recorded were during the spring control and summer thermal seasons for both 1977 and 1979 along with the 1979 winter thermal mean.

Juncus Comparisons

The only biomass parameters available from 1973 for comparison purposes were live and dead weights from the thermally affected marsh

Season	Date	Treatment	Sample Size	lnsolation, kcal*m ⁻² *d ⁻¹	Alr Temperature, ℃	Net Productivity, g C°m ⁻² •d ⁻¹	Nighttime Respiration, g C°m ⁻² •d ⁻¹	Gross Productivity, g C°m ⁻² •d ⁻¹
Winter	1/31/78	Thermal	2	90 5	11.8	1.18 + 0.08*	0.56 + 0.03	0.73 + 0.05
-	1/13/79	Thermal	2	2664	9.8	1.17 + 0.21*	0.49 + 0.14	1.65 + 0.35
	1/05/80	Thermal	4	2196	8.9	- 0.39 + 0.08	1.32 + 0.26	0.92 + 0.19
	2/02/78	Control	2	453	15.9	0.19 + 0.03	0.18 + 0.02*	0.37 + 0.01*
	1/06/79	Control	2	2119	13.2	2.79 + 0.48	1.07 + 0.08	3.86 + 0.56
	1/03/80	Control	4	2315	13.4	0.90 + 0.43	1.33 + 0.23	2.43 + 0.43
Spring	3/07/73	Thermal	4	4590	23.0	1.41 + 0.15*	1.78 + 0.43	3.18 + 0.33*
	5/01/77	Thermal	4	4322	22.2	2.86 + 0.32	2.91 + 0.72	5.77 + 1.00
	4/11/78	Thermal	2	5960	26.5	2.95 + 0.13	2.73 + 0.09	5.68 + 0.21
	3/31/79	Thermal	4	3353	23.5	3.52 + 0.27	1.57 + 0.06	5.09 + 0.24
	3/26/80	Thermal	4	2683	19.6	3.51 <u>+</u> 0.16	2.31 + 0.21	5.82 <u>+</u> 0.47
	3/12/73	Control	2	4604	23.4	3.47 + 0.24*	1.80 + 0.26	5.27 + 0.37*
	5/08/77	Control	3	3440	24.5	1.94 + 0.11	1.42 + 0.05	3.36 + 0.20
	4/08/78	Control	4	6761	27.2	1.03 + 0.25	2.04 + 0.13	3.07 + 0.12
	4/06/79	Control	2	3679	26.7	1.98 + 0.41	0.65 + 0.06*	2.63 + 0.47
	3/28/80	Control	2	3098	21.1	1.19 + 0.13	1.52 + 0.1	2.71 + 0.03
Summer	7/28/73	Thermal	4	5000	29.7	5.83 + 0.94	1.22 + 0.31	7.50 + 1.39
	7/24/77	Thermal	5	4468	30.0	3.32 + 0.37	1.20 + 0.06*	4.52 + 0.42
	7/06/78	Thermal	2	No data	30.4	1.79 + 0.02	2.39 + 0.18	4.38 + 0.39
	6/15/79	Thermal	2	4337	25.4	6.06 + 0.76*	1.62 + 0.14	7.66 + 0.92
	7/11/80	Thermal	2	2643	31.0	2.60 + 0.09	2.09 <u>+</u> 0.10	4.69 + 0.01
	8/03/73	Control	2	3500	28.3	6.30 <u>+</u> 1.15	1.22 + 0.31	7.52 <u>+</u> 1.39
	7/16/77	Control	2	2038	26.1	2.50 + 1.5	1.69 + 0.20	4.19 + 1.7
	7/01/78	Control	4	2407	30.8	2.82 + 0.40	2,90 <u>+</u> 0,11*	5.72 + 0.44
	6/14/79	Control	1	5370	25.4	3.72	1.03	4.69
	7/04/80	Control	4	3691	34.5	4.05 + 0.28	1.49 + 0.10	5.54 <u>+</u> 0.29

Table 11-58. Comparison of <u>Spartina</u> metabolism for 1980 with previous year's seasonal means (<u>+</u> one standard error).

Table II-58 (Cont'd),

Season	Date	Treatment	Sample Size	lnsolation, kcal°m ⁻² •d ⁻¹	Alr Temperature, ℃	Net Productivity, g C°m ⁻² •d ⁻¹	Nighttime Respiration, g C [*] m ⁻² *d ⁻¹	Gross Productivity, g C°m ⁻² •d ⁻¹
Fall	73†	Thermal	t	No data	No data	No data	No data	No data
	10/06/77	Thermal	4	4141	23.9	0.81 + 0.43	1.14 + 0.14	1.95 + 0.34
	9/28/78	Thermal	3	955	25.3	2.19 + 0.43	1.09 + 0.17	3.28 + 0.58
	9/14/79	Thermal	4	3100	27.5	1.70 + 0.49	1.23 + 0.20	2.93 + 0.67
	10/11/80	Thermal	4	2815	28.0	2.28 + 0.92	1.77 <u>+</u> 0.25	4.05 + 1.14
	73 †	Control	+	No data	No data	No data	No data	No data
	10/10/77	Control	4	3561	25.4	1.51 + 0.28	1.38 + 0.38	2.89 + 0.60
	9/24/78	Control	2	2679	28.3	2.50 + 1.12	1.19 + 0.18	3.69 + 0.04
	9/12/79	Control	2	2401	28.8	4.62 + 0.88	1.34 + 0.07	5.96 + 0.81
	10/05/80	Control	4	2477	23.0	3.69 + 1.39	1.59 + 0.40	5.28 <u>+</u> 1.65

Figure II-89. Comparison of preoperational (1973) with 1977-1980 seasonal means of Spartina net productivity. Bars represent + one standard error. Asterisks indicate that a significant difference at a 95% confidence level was recorded when compared to the 1980 seasonal means.

Figure II-90. Comparison of preoperational (1973) with 1977—1980 seasonal means of <u>Spartina</u> nighttime respiration. Bars represent + one standard error. Asterisks indicate that a significant difference at a 95% confidence level was recorded when compared to the 1980 seasonal means.

11

Figure II-91. Comparison of preoperational (1973) with 1977-1980 seasonal means of Spartina gross productivity. Bars represent + one standard error. Asterisks indicate that a significant difference at a 95% confidence level was recorded when compared to the 1980 seasonal means.

Season	Year	Treatment	P/R Ratio
Winter	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	No data No data 0.51 <u>+</u> 0.10 2.03 <u>+</u> 0.17* 0.41 <u>+</u> 0.03
	1973 1977 1978 1979 1980	Control Control Control Control Control	No data No data 0.99 <u>+</u> 0.12 2.04 <u>+</u> 0.14 1.12 <u>+</u> 0.43
Spring	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	$\begin{array}{r} 0.89 \\ 1.07 + 0.10 \\ 1.06 + 0.01 \\ 1.60 + 0.12 \\ 1.30 + 0.16 \end{array}$
	1973 1977 1978 1979 1980	Control Control Control Control Control	$\begin{array}{r} 0.75 \\ 1.19 + 0.04* \\ 0.67 + 0.12 \\ 1.93 + 0.18* \\ 0.90 + 0.10 \end{array}$
Summer	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	3.07 $1.82 + 0.19*$ $0.84 + 0.03$ $1.94 + 0.06*$ $0.94 + 0.06$
	1973 1977 1978 1979 1980	Control Control Control Control Control	$\begin{array}{c} 0.99\\ 1.22 + 0.27\\ 0.91 + 0.05\\ 1.91\\ 1.59 + 0.32 \end{array}$
Fall	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	No data 0.86 <u>+</u> 0.25 1.85 <u>+</u> 0.54 1.12 <u>+</u> 0.29 1.13 <u>+</u> 0.21
	1973 1977 1978 1979 1980	Control Control Control Control Control	No data 1.13 ± 0.09 1.75 ± 0.55 2.18 ± 0.40 1.68 ± 0.33

Table II-59. Comparison of <u>Spartina</u> P/R ratios for 1980 with previous year's seasonal means (+ one standard error).

Figure II-92. Comparison of preoperational (1973) with 1977—1980 seasonal means of <u>Spartina</u> P/R ratios. Bars represent <u>+</u> one standard error. Asterisks indicate that a significant difference at a 95% confidence level was recorded when compared to the 1980 seasonal means.

(Table II-60 and Figs. II-93 and II-94). Both sets of preoperational data means were significantly lower than 1980 values, with the exception of the fall thermal marsh dead weight mean.

1980 Data Compared with 1977-1979 Data

When compared with 1980 means, 1977, 1978, and 1979 postoperational data showed few significant differences with the exception of <u>Juncus</u> shoot heights (Table II-61 and Fig. II-95), which were significantly different for every year during the spring and summer seasons (both thermal and control). Other <u>Juncus</u> parameters showing significant differences were live shoot density (spring control 1978-1979, fall control 1978-1979) (Table II-62 and Fig. II-96), and live and dead <u>Juncus</u> weights (both reporting significant differences during the winter thermal and control and spring thermal) (Table II-60 and Figs. II-93 and II-94). Specific weights (Table II-63 and Fig. II-97), <u>Littorina</u> (Table II-64 and Fig. II-98), and <u>Uca</u> burrows (Table II-65 and Fig. II-99) each reported a few scattered significant differences with 1980 means. <u>Juncus</u> flowering shoots showed no significant differences for postoperational data although unusually high means were reported (Table II-66 and Fig. II-100).

A few noticeable trends can be seen in <u>Juncus</u> shoot heights (Fig. II-95). The shoot height values are consistently higher in the control marsh. This is also evident in the postoperational means in the <u>Spartina</u> marsh (Fig. II-85). On the other hand, mean values of live and dead shoot density in the thermal marsh are consistently greater than those in the control marsh (Figs. II-96 and II-101). Flowering <u>Juncus</u> shoot densities decreased in annual means (Table II-66 and Fig. II-100) while <u>Littorina</u> density increased slightly over the 4-year postoperational record (Table II-64 and Fig. II-98).

Season	Year	Treatment	Live Biomass g·m ⁻²	Dead Biomass g•m ⁻²
Winter	1973	Thermal	$475 \pm 50*$	880 <u>+</u> 100*
	1977	Thermal	No data	No data
	1978	Thermal	892 ± 166	850 <u>+</u> 94*
	1979	Thermal	891 ± 158	1070 <u>+</u> 203
	1980	Thermal	1280 ± 178	1290 <u>+</u> 165
	1973	Control	No data	No data
	1977	Control	No data	No data
	1978	Control	575 <u>+</u> 183*	925 <u>+</u> 243
	1979	Control	634 <u>+</u> 134*	615 <u>+</u> 167*
	1980	Control	1070 <u>+</u> 92.4	1210 <u>+</u> 135
Spring	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	$515 + 50* \\988 + 157 \\980 + 135 \\1160 + 139 \\1100 + 135$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	1973	Control	No data	No data
	1977	Control	1140 <u>+</u> 202	634 <u>+</u> 79.7
	1978	Control	939 <u>+</u> 95.5	970 <u>+</u> 79.4
	1979	Control	1130 <u>+</u> 109	971 <u>+</u> 81.7
	1980	Control	946 <u>+</u> 216	759 <u>+</u> 118
Summer	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	$525 + 75* \\1350 + 163 \\1790 + 291 \\1120 + 120 \\1160 + 153$	980 + 120* 1390 + 250 1140 + 267 1540 + 131 1520 + 82.2
	1973	Control	No data	No data
	1977	Control	941 <u>+</u> 108	770 <u>+</u> 147
	1978	Control	1230 <u>+</u> 135	1250 <u>+</u> 191
	1979	Control	968 <u>+</u> 109	830 <u>+</u> 149
	1980	Control	1020 <u>+</u> 69.9	808 <u>+</u> 115
Fall	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	520 + 70* $1510 + 265$ $1430 + 157$ $807 + 82.1$ $1130 + 140$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	1973	Control	No data	No data
	1977	Control	1530 <u>+</u> 201	1390 <u>+</u> 239
	1978	Control	1450 <u>+</u> 176	920 <u>+</u> 146
	1979	Control	952 <u>+</u> 183	1250 <u>+</u> 115
	1980	Control	1570 <u>+</u> 208	1370 <u>+</u> 229

Table II-60. Comparison of <u>Juncus</u> biomass weights for 1980 with previous year's seasonal means (<u>+</u> one standard error).

aboveground live biomass weights. Bars represent <u>+</u> one standard error. Asterisks indicate that a significant difference at a 95% confidence level was recorded when compared to the 1980 seasonal means.

Figure II-94. Comparison of preoperational (1973) with 1977-1980 seasonal means for <u>Juncus</u> aboveground dead biomass weights. Bars represent <u>+</u> one standard error. Asterisks indicate that a significant difference at a 95% confidence level was recorded when compared to the 1980 seasonal means.

Season	Year	Treatment	Shoot Heights, cm
Winter	1973	Thermal	No data
	1977	Thermal	No data
	1978	Thermal	90.7 <u>+</u> 1.52
	1979	Thermal	102 <u>+</u> 1.88*
	1980	Thermal	94.9 <u>+</u> 1.55
	1973	Control	No data
	1977	Control	No data
	1978	Control	102 <u>+</u> 2.12
	1979	Control	108 <u>+</u> 1.91*
	1980	Control	97.7 <u>+</u> 1.91
Spring	1973	Thermal	No data
	1977	Thermal	91.0 <u>+</u> 1.7*
	1978	Thermal	86.7 <u>+</u> 0.98*
	1979	Thermal	85.7 <u>+</u> 1.39*
	1980	Thermal	78.8 <u>+</u> 1.74
	1973	Control	No data
	1977	Control	105 + 1.8*
	1978	Control	103 + 1.5*
	1979	Control	90.1 + 1.76*
	1980	Control	84.3 + 1.74
Summer	1973	Thermal	No data
	1977	Thermal	100 <u>+</u> 0.80*
	1978	Thermal	99.4 <u>+</u> 1.43*
	1979	Thermal	84.9 <u>+</u> 1.08*
	1980	Thermal	94.6 <u>+</u> 1.32
	1973	Control	No data
	1977	Control	109 <u>+</u> 1.43*
	1978	Control	112 <u>+</u> 1.43*
	1979	Control	94.7 <u>+</u> 1.44*
	1980	Control	103 <u>+</u> 1.61
Fall	1973	Thermal	No data
	1977	Thermal	105 <u>+</u> 1.2*
	1978	Thermal	102 <u>+</u> 1.19
	1979	Thermal	99.0 <u>+</u> 1.58
	1980	Thermal	98.7 <u>+</u> 1.52
	1973	Control	No data
	1977	Control	133 <u>+</u> 1.1*
	1978	Control	120 <u>+</u> 2.05
	1979	Control	118 <u>+</u> 1.77
	1980	Control	116 <u>+</u> 1.73

Table II-61. Comparison of <u>Juncus</u> shoot heights for 1980 with previous year's seasonal means (<u>+</u> one standard error).

shoot heights. Bars represent <u>+</u> one standard error. Asterisks indicate that a significant difference at a 95% confidence level was recorded when compared to the 1980 seasonal means.

Season	Year	Treatment	Live Shoots•m ⁻²	Dead Shoots'm ⁻²
Winter	1973	Thermal	No data	No data
	1977	Thermal	No data	No data
	1978	Thermal	552 <u>+</u> 55.6	557 <u>+</u> 133
	1979	Thermal	467 <u>+</u> 76.8	415 <u>+</u> 91.4
	1980	Thermal	770 <u>+</u> 90.1	580 <u>+</u> 51.6
	1973	Control	No data	No data
	1977	Control	No data	No data
	1978	Control	438 <u>+</u> 102	266 ± 860
	1979	Control	298 <u>+</u> 58.7*	266 ± 67.8
	1980	Control	495 <u>+</u> 42.7	304 ± 57.7
Spring	1973	Thermal	No data	No data
	1977	Thermal	650 <u>+</u> 106	222 <u>+</u> 69.3*
	1978	Thermal	738 <u>+</u> 95.9	518 <u>+</u> 62
	1979	Thermal	816 <u>+</u> 42.8	751 <u>+</u> 41.7
	1980	Thermal	766 <u>+</u> 151	624 <u>+</u> 70.1
	1973	Control	No data	No data
	1977	Control	650 <u>+</u> 71.8	274 <u>+</u> 47.4
	1978	Control	290 <u>+</u> 41.6*	290 <u>+</u> 41.6
	1979	Control	294 <u>+</u> 59.2*	394 <u>+</u> 59.2
	1980	Control	688 <u>+</u> 101	270 <u>+</u> 49.6
Summer	1973	Thermal	No data	No data
	1977	Thermal	795 <u>+</u> 98.9	773 $+$ 181
	1978	Thermal	487 <u>+</u> 102	682 $+$ 69.8
	1979	Thermal	812 <u>+</u> 87.2	852 $+$ 165
	1980	Thermal	561 <u>+</u> 49.5	587 $+$ 26.1
	1973	Control	No data	No data
	1977	Control	446 <u>+</u> 40.4	363 <u>+</u> 61.6
	1978	Control	529 <u>+</u> 70.5	385 <u>+</u> 20.9
	1979	Control	561 <u>+</u> 52.7	532 <u>+</u> 97.7*
	1980	Control	509 <u>+</u> 45.1	272 <u>+</u> 39.9
Fall	1973	Thermal	No data	No data
	1977	Thermal	696 + 161	173 <u>+</u> 15.9*
	1978	Thermal	700 + 39.3	633 <u>+</u> 57.0
	1979	Thermal	453 + 53.3	610 <u>+</u> 55.0
	1980	Thermal	586 + 35.3	530 <u>+</u> 67.9
	1973	Control	No data	No data
	1977	Control	569 <u>+</u> 119	118 <u>+</u> 11.8*
	1978	Control	341 <u>+</u> 63.5*	378 <u>+</u> 76.2
	1979	Control	410 <u>+</u> 46.7*	506 <u>+</u> 54.5
	1980	Control	626 <u>+</u> 79.3	487 <u>+</u> 66.9

Table II-62. Comparison of <u>Juncus</u> shoot densities for 1980 with previous year's seasonal means (+ one standard error).

Figure II-96. Comparison of preoperational (1973) with 1977—1980 seasonal means for <u>Juncus</u> live shoot densities. Bars represent <u>+</u> one standard error. Asterisks indicate that a significant difference at a 95% confidence level was recorded when compared to the 1980 seasonal means.

Season	Year	Treatment	Specific Weight g'shoot ⁻¹
Winter	1973	Thermal	1.2
	1977	Thermal	No data
	1978	Thermal	1.6 \pm 0.12
	1979	Thermal	1.9 \pm 0.09
	1980	Thermal	1.7 \pm 0.08
	1973	Control	No data
	1977	Control	No data
	1978	Control	2.1 ± 0.10
	1979	Control	2.1 ± 0.11
	1980	Control	2.2 ± 0.11
Spring	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	$1.5 \\ 1.5 + 1.10 \\ 1.4 + 0.04 \\ 1.4 + 0.15 \\ 1.9 + 0.68$
	1973	Control	No data
	1977	Control	1.8 ± 0.20
	1978	Control	2.0 ± 0.07
	1979	Control	1.8 ± 0.13
	1980	Control	1.4 ± 0.27
Summer	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	1.0 $1.7 + 0.10$ $2.5 + 0.52$ $1.4 + 0.06$ $2.2 + 0.41$
	1973	Control	No data
	1977	Control	2.1 + 0.10
	1978	Control	2.3 + 0.08*
	1979	Control	1.7 + 0.09*
	1980	Control	2.0 + 0.08
Fall	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	$ \begin{array}{r} 1.6\\ 2.2 + 0.20\\ 1.8 + 0.03\\ 1.8 + 0.05\\ 1.9 + 0.17 \end{array} $
	1973	Control	No data
	1977	Control	2.9 ± 0.30
	1978	Control	3.0 ± 0.51
	1979	Control	2.3 ± 0.33
	1980	Control	2.5 ± 0.03

Table II-63. Comparison of <u>Juncus</u> specific weights for 1980 with previous year's seasonal means (<u>+</u> one standard error).

Figure II-97. Comparison of preoperational (1973) with 1977—1980 seasonal means for <u>Juncus</u> specific weights. Bars represent <u>+</u> one standard error. Asterisks indicate that a significant difference at a 95% confidence level was recorded when compared to the 1980 seasonal means.

Season	Year	Treatment	Littorina [•] m ⁻²
Winter	1973	Thermal	No data
	1977	Thermal	No data
	1978	Thermal	0.0 <u>+</u> 0
	1979	Thermal	12.8 <u>+</u> 1.96
	1980	Thermal	23.2 <u>+</u> 7.94
	1973	Control	No data
	1977	Control	No data
	1978	Control	0.0 ± 0
	1979	Control	1.6 ± 0.98
	1980	Control	0.8 ± 0.80
Spring	1973	Thermal	No data
	1977	Thermal	3.2 + 0.80
	1978	Thermal	5.7 + 2.59
	1979	Thermal	6.4 + 2.99
	1980	Thermal	9.6 + 4.49
	1973	Control	No data
	1977	Control	0.8 + 0.80
	1978	Control	0.0 + 0
	1979	Control	11.2 + 2.94*
	1980	Control	3.2 + 0.80
Summer	1973	Thermal	No data
	1977	Thermal	2.0 + 0.89*
	1978	Thermal	3.3 + 1.91*
	1979	Thermal	12.8 + 6.25
	1980	Thermal	13.1 + 2.09
	1973	Control	No data
	1977	Control	0.0 + 0
	1978	Control	0.0 + 0
	1979	Control	0.0 + 0
	1980	Control	4.0 + 2.19
Fall	1973	Thermal	No data
	1977	Thermal	5.6 + 3.0
	1978	Thermal	2.3 + 1.71
	1979	Thermal	8.8 + 3.20
	1980	Thermal	8.8 + 2.65
	1973	Control	No data
	1977	Control	0.0 + 0
	1978	Control	0.0 + 0
	1979	Control	4.8 + 2.33
	1980	Control	7.6 + 5.00

Table II-64. Comparison of <u>Littorina</u> densities in <u>Juncus</u> marshes for 1980 with previous year's seasonal means (\pm one standard error).

Figure II-98. Comparison of preoperational (1973) with 1977-1980 seasonal means of Littorina densities in the Juncus marshes. Bars represent + one standard error. Asterisks indicate that a significant difference at a 95% confidence level was recorded when compared to the 1980 seasonal means.

Season	Year	Treatment	Uca Burrows·m ⁻²
Winter	1973	Thermal	No data
	1977	Thermal	No data
	1978	Thermal	88 <u>+</u> 18
	1979	Thermal	210 <u>+</u> 55.7
	1980	Thermal	191 <u>+</u> 28.4
	1973	Control	No data
	1977	Control	No data
	1978	Control	120 <u>+</u> 9.7
	1979	Control	65 <u>+</u> 8.27
	1980	Control	88.0 <u>+</u> 18.6
Spring	1973	Thermal	No data
	1977	Thermal	153 <u>+</u> 42
	1978	Thermal	277 <u>+</u> 28.8
	1979	Thermal	139 <u>+</u> 52.7
	1980	Thermal	233 <u>+</u> 21.4
	1973	Control	No data
	1977	Control	102 + 24*
	1978	Control	181 + 34.9
	1979	Control	152 + 44.1
	1980	Control	222 + 10.2
Summer	1973	Thermal	No data
	1977	Thermal	No data
	1978	Thermal	377 <u>+</u> 38.4
	1979	Thermal	170 <u>+</u> 26.6*
	1980	Thermal	450 <u>+</u> 65.6
	1973	Control	No data
	1977	Control	189 + 20
	1978	Control	293 + 22.1
	1979	Control	189 + 32.7
	1980	Control	252 + 46.7
Fall	1973	Thermal	No data
	1977	Thermal	197 <u>+</u> 21
	1978	Thermal	276 <u>+</u> 24.3
	1979	Thermal	242 <u>+</u> 17.5
	1980	Thermal	182 <u>+</u> 53.6
	1973	Control	No data
	1977	Control	134 + 21
	1978	Control	290 + 16.5*
	1979	Control	205 + 41.1
	1980	Control	138 + 19.1

Table II-65. Comparison of <u>Uca</u> burrow densities in <u>Juncus</u> marshes for 1980 with previous year's seasonal means (<u>+</u> one standard error).

:

Figure II-99. Comparison of preoperational (1973) with 1977-1980 seasonal means of <u>Uca</u> burrow densities in the <u>Juncus</u> marshes. Bars represent + one standard error. Asterisks indicate that a significant difference at a 95% confidence level was recorded when compared to the 1980 seasonal means.

Season	Year	Treatment	Flowering <u>Juncus</u> Shoots [•] m ⁻²
Winter	1973	Thermal	No data
	1977	Thermal	No data
	1978	Thermal	O
	1979	Thermal	O
	1980	Thermal	O
	1973	Control	No data
	1977	Control	No data
	1978	Control	O
	1979	Control	O
	1980	Control	O
Spring	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	No data 2.4 $\frac{+}{+}$ 2.4 6.7 $\frac{+}{0}$ 4.37 0.8 \pm 0.8
	1973	Control	No data
	1977	Control	16.0 + 6.7
	1978	Control	6.2 + 3.41
	1979	Control	4.8 + 3.2
	1980	Control	1.6 + 1.0
Summer	1973	Thermal	No data
	1977	Thermal	O
	1978	Thermal	O
	1979	Thermal	O
	1980	Thermal	O
	1973 1977 1978 1979 1980	Control Control Control Control Control	No data 0 3.2 + 3.2
Fall	1973	Thermal	No data
	1977	Thermal	O
	1978	Thermal	O
	1979	Thermal	O
	1980	Thermal	O
	1973 1977 1978 1979 1980	Control Control Control Control Control	No data 2.4 $\frac{+}{0}$ 1.6 0 0

Table II-66.	Comparison of	Juncus	flowering	shoot	densities	for	1980	with
	previous year	's seaso	onal means	(<u>+</u> one	standard	erro	or).	

Figure II-101. Comparison of preoperational (1973) with 1977—1980 seasonal means of <u>Juncus</u> dead shoot densities. Bars represent <u>+</u> one standard error. Asterisks indicate that a significant difference at a 95% confidence level was recorded when compared to the 1980 seasonal means.

Juncus Metabolism Comparisons

In the thermal marsh, 1980 net productivity means were significantly greater than those of spring 1973 and winter and summer 1978 (Table II-67 and Fig. II-102). Nighttime respiration values were not significantly different during the postoperational years (Fig. II-103). An unusually high 1980 winter gross productivity mean at the control marsh (Fig. II-104), was significantly higher than values recorded during 1977 and 1978.

Comparisons of P/R ratios are given in Table II-68 and Fig. II-105. The 1980 summer mean in the control marsh was significantly higher than in 1978 and significantly lower than in 1979. This parameter was significantly lower during winter 1978 in the thermal marsh.

Discussion

1980 Biomass Values

In the <u>Spartina</u> marshes, maximum values of aboveground biomass weights, specific weights, and stalk heights were found at the end of the growing season in the fall. This represented the end of the accumulation of the years productivity. Quantitatively, the <u>Spartina</u> control marsh maintained a slightly larger storage of total aboveground biomass (fewer but taller plants) while the thermally affected plots contained a greater number of smaller plants per square meter. This resulted in greater seasonal means of specific weight in the Spartina control area.

Data on net production of <u>Juncus</u> and the graphs of <u>Juncus</u> biomass indicate that the peak of the growing season occurred in the spring and summer. Winter production was less in thermal and control areas suggesting light limitations and/or effect of air temperature. As in the <u>Spar</u>tina communities there was apparent lengthening of the growing season in

Season	Date	Treatment	Sample Size	Insolation, kcal*m ⁻² •d ⁻¹	A⊺r Temperature, ℃	Net Productivity, g C°m ⁻² •d ⁻¹	Nighttime Respiration, g C [.] m ⁻² .d ⁻¹	Gross Productivity, g C·m ⁻² ·d ⁻¹
Winter	77*	Thermal	*	No data	No data	No data	No data	No data
	1/31/78	Thermal	2	905	11.8	1.14 + 0.18	1.01 + 0.20	2.15 + 0.02 +
	1/13/79	Thermal	2	2664	9.8	2.97 + 0.05	1.06 + 0.08	4.02 + 0.13
	1/05/80	Thermal	4	2196	8.9	5.93 <u>+</u> 0.90	1.21 <u>+</u> 0.21	7.14 + 1.02
	2/02/78	Control	2	453	15.9	1.07 <u>+</u> 0.37	1.05 + 0.06	2.12 <u>+</u> 0.31
	1/06/79	Contro1	2	2119	13.2	2.59 + 0.35	0.87 + 0.03	3.46 + 0.38
	1/03/80	Control	4	2315	13.4	2.82 + 2.05	1.76 + 0.25	4.58 <u>+</u> 2.13
Spring	3/07/73	Thermal	4	4590	22.0	2.40 <u>+</u> 0.31†	2.22 + 0.34	4.62 + 0.30
_	5/01/77	Thermal	3	4369	22.2	3.09 + 0.89	4.60 + 1.4	7.69 + 1.5
	4/11/78	Thermal	3	5960	26.4	3.39 + 0.63	2.68 + 0.31	6.57 + 0.38
	3/31/79	Thermal	4	3353	23.5	4.82 + 0.55	2.16 ± 0.46	6.98 + 0.49
	3/26/80	Thermal	4	2683	19.6	5.81 + 0.84	3.13 + 0.99	8.91 <u>+</u> 1.74
	3/12/73	Control	2	4604	23.4	6.33 + 0.33	3.03 + 1.13	9.37 + 0.56
	5/08/77	Control	2	3251	24.5	4.88 + 0.24	2.88 + 0.07	7.77 + 0.25
	4/08/78	Control	4	6761	27.2	5.07 + 0.41	2.67 + 0.31	7.74 + 0.59
	4/06/79	Control	2	3679	26.7	4.94 + 1.26	1.24 + 0.25	6.19 + 1.00
	3/28/80	Control	2	3098	21.1	6.60 <u>+</u> 0.55	2 . 33 <u>+</u> 0.33	8.83 + 0.88
Summer	7/28/73	Thermal	4	5000	29.7	3.84 + 0.49	2.30 <u>+</u> 0.16	6.14 <u>+</u> 0.47
	7/24/77	Thermal	б	4661	30.2	4.71 + 0.22	2.09 + 0.21	6.80 + 0.32
	7/06/78	Thermal	2	No data	30.4	1.49 + 0.00†	2.36 + 0.16	3.85 + 0.16
	6/15/79	Thermal	2	4337	25.4	5.08 + 1.07	1.48 + 0.01	6.56 + 1.08
	7/11/80	Thermal	3	2643	31.0	3.59 + 0.41	2.61 + 0.57	6.20 + 0.74
	7/28/73	Control	2	3500	28.3	4.52 + 0.75	3.22 + 0.46	7.74 + 0.84
	7/20/77	Control	4	4593	31.2	5.06 + 0.44	1.73 + 0.02	6.78 + 0.46
	7/01/78	Control	4	2407	30.8	3.66 + 0.52	3.28 + 0.38	6.93 + 0.89
	6/14/79	Control	2	5370	25.4	6.94 + 1.21	1.26 + 0.23	8.20 + 1.44
	7/04/80	Control	4	3691	34.5	5.86 <u>+</u> 0.88	2.11 + 0.48	7.98 <u>+</u> 1.28

Table 11-67. Comparison of Juncus metabolism for 1980 with previous year's seasonal means (+ one standard error).

Season	Date	Treatment	Sample Size	insolation, kcal*m ⁻² *d ⁻¹	Air Temperature, ℃	Net Productivity, g C°m ⁻² •d ⁻¹	Nightfime Respiration, g C°m ⁻² •d ⁻¹	Gross Productivity, g C°m ⁻² •d ⁻¹
Fall	73 *	Thermal	¥	No data	No data	No data	No data	No data
	10/06/77	Thermal	4	4141	23.9	1.52 + 0.39	1.48 + 0.32	3.00 + 0.15
	9/28/78	Thermal	3	955	25.3	3.90 + 0.66	1.66 + 0.18	5,56 + 0,73
	9/11/79	Thermal	4	3100	27.5	2.41 + 0.38	1.61 + 0.07	4.03 + 0.42
	10/11/80	Thermal	4	2815	28.0	3.55 <u>+</u> 2.03	2.50 + 0.60	6.04 + 2.38
	73*	Control	×	No data	No data	No data	No data	No data
	10/10/77	Control	4	3561	25.4	2.68 + 0.37	1.47 + 0.31	4.15 + 0.53†
	9/24/78	Control	2	2679	28.3	2.48 + 0.11	1.27 + 0.26	3.75 + 0.37†
	9/12/79	Control	4	2401	28.8	3.44 + 0.47	2.38 + 0.63	5.82 + 1.07
	10/05/80	Control	4	2477	23.0	9.42 + 3.62	2.84 + 0.75	12.26 + 4.28

*Not available.

Figure II-102. Comparison of preoperational (1973) with 1977—1980 seasonal means of <u>Juncus</u> net productivity. Bars represent <u>+</u> one standard error. Asterisks indicate that a significant difference at a 95% confidence level was recorded when compared to the 1980 seasonal means.

Figure II-103. Comparison of preoperational (1973) with 1977-1980 seasonal means of <u>Juncus</u> nighttime respiration. Bars represent <u>+</u> one standard error. Asterisks indicate that a significant difference at a 95% confidence level was recorded when compared to the 1980 seasonal means.

.

Figure II-104. Comparison of preoperational (1973) with 1977-1980 seasonal means of Juncus gross productivity. Bars represent + one standard error. Asterisks indicate that a significant difference at a 95% confidence level was recorded when compared to the 1980 seasonal means.

Season	Year	Treatment	P/R Ratio
Winter	1973	Thermal	No data
	1977	Thermal	No data
	1978	Thermal	1.17 <u>+</u> 0.19*
	1979	Thermal	2.17 <u>+</u> 0.11
	1980	Thermal	3.50 <u>+</u> 0.59
	1973	Control	No data
	1977	Control	No data
	1978	Control	0.73 ± 0.03
	1979	Control	2.25 ± 0.16
	1980	Control	1.52 ± 0.62
Spring	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	1.04 1.02 + 0.20 1.28 + 0.22 1.83 + 0.35 1.84 + 0.74
	1973	Control	1.45
	1977	Control	1.37
	1978	Control	1.51 \pm 0.14
	1979	Control	2.79 \pm 0.95
	1980	Control	1.99 \pm 0.10
Summer	1973 1977 1978 1979 1980	Thermal Thermal Thermal Thermal Thermal	1.34 1.62 + 0.08 0.78 + 0.03 1.83 + 0.29 1.02 + 0.15
	1973 1977 1978 1979 1980	Control Control Control Control Control	1.06 1.86 + 0.08 1.05 + 0.03* 2.69 + 0.02* 1.61 + 0.19
Fall	1973	Thermal	No data
	1977	Thermal	1.12 + 0.26
	1978	Thermal	1.77 + 0.25
	1979	Thermal	1.19 + 0.11
	1980	Thermal	1.22 + 0.38
	1973	Control	No data
	1977	Control	1.66 <u>+</u> 0.24
	1978	Control	1.58 <u>+</u> 0.17
	1979	Control	1.25 <u>+</u> 0.08
	1980	Control	2.13 <u>+</u> 0.42

Table II-68. Comparison of <u>Juncus P/R</u> ratios for 1980 with previous year's seasonal means (<u>+</u> one standard error).

*Indicates a significant difference at a 95% confidence level was recorded when compared with the 1980 seasonal mean.

rigure 11-105. Comparison of preoperational (1973) with 1977—1980 seasonal means of Juncus P/R ratios. Bars represent <u>+</u> one standard error. Asterisks indicate that a significant difference at a 95% confidence level was recorded when compared to the 1980 seasonal means.

the discharge marsh attributable to the thermal effluent. Unlike the <u>Spartina</u> communities, the <u>Juncus</u> thermally affected area maintained a larger storage of aboveground biomass than the control area. While shoot densities were greater in the thermal marsh, the specific weight (weight per shoot) was approximately the same in both <u>Juncus</u> marshes during the peak growing season and consistantly higher on the control site in the <u>Spartina</u> marsh. Both <u>Juncus</u> and <u>Spartina</u> plants in the thermally affected area were significantly shorter throughout the year than those in the control marsh.

In the <u>Spartina</u> marsh, peak flower production occurred during the fall, which is concurrent with the maximum rate of metabolism and net energy storage as indicated by the P/R ratio.

1980 Invertebrate Activity

The greater stalk density in the thermally affected marsh provided a larger surface area to potentially support greater algal growth and, in turn, greater <u>Littorina</u> populations. The warmer water temperatures apparently did not interfere with maintenance of <u>SDail</u> populations in the thermally affected marsh.

The greater density of <u>Uca</u> burrows observed in the thermally affected marsh during the cooler months of the year (winter and spring) could possibly be attributed to the heated effluent, providing a stimulus to <u>Uca</u> activity.

1980 Metabolism

In the <u>Spartina</u> discharge marsh, the thermal loading appeared to be positively correlated with higher rates of both net productivity and nighttime respiration during the spring. This suggests that the heated water was being used by the plants to increase their production. In both

<u>Spartina</u> and <u>Juncus</u> marshes there was evidence that the plants maintained productivity at higher temperatures but did so with changes in size, numbers of stalks, and increased metabolism per unit biomass.

1973-1980 Long-Term Trends

The intake marsh served as the control site for comparing the effects of Unit 3's thermal discharge on the marsh. Many preoperational values were significantly different from the mean values of postoperational years. These differences could be the effects of a long-term resiliency of the control marsh from perturbation caused by previous canal dredging, the different location at sampling, stress on the site from continuous monitoring, or other such factors.

Dissimilar <u>Littorina</u> sampling techniques in 1977 and 1978 could possibly be responsible for the differences in <u>Littorina</u> density. During 1977 and 1978, <u>Littorina</u> abundance was estimated in both intake and discharge marshes at low tide as the plots were being harvested. This may have resulted in an under estimation of <u>Littorina</u> density because the snails were not readily visible. A new technique was introduced in 1979, whereby the snails were counted during high tide as they were exposed above the water level. This resulted in mean values that were significantly greater than 1977 and 1978 means.

When comparing the thermal marsh with the control, no significant differences in metabolism (gross productivity, net productivity, and respiration) were recorded in the <u>Juncus</u> marsh during 1979 and 1980 with a few being reported prior to then. In addition many <u>Juncus</u> biomass parameters have shown significant changes in the thermal marsh throughout the postoperational years. These changes include a trend in shortening of shoot heights, increasing the shoot density and increasing the Littorina

density. These changes are accompanied by no significant differences in aboveground biomass. These changes (metabolism and biomass) are concurrent with those of the <u>Spartina</u> marsh. This suggests that the thermal effluent inundating the marsh is changing its morphology but having little affect on the marsh productivity.

Summary

- 1. As in previous years, both <u>Juncus</u> and <u>Spartina</u> marshes in the thermally affected areas were characterized by shorter, lower specific weight, and more numerous plants per unit area than the control marshes. Higher dead <u>Juncus</u> biomass was measured in the thermal marsh. Marsh productivies were similar in thermal and control marshes.
- 2. Seasonal mean <u>Littorina</u> biomass was consistently higher in both <u>Juncus</u> and Spartina thermal marshes than in their control marshes.
- 3. <u>Uca</u> burrow densities in the <u>Spartina</u> marsh were greater in the discharge area than in the intake area in the cooler seasons (winter and spring). This suggests stimulation of invertebrate activity in response to thermal loading.
- 4. Differences in specific weight, stalk heights, and stalk density that were observed between <u>Spartina</u> 1980 and previous years' measurements on the intake suggest either structurally different communities have been sampled or the control marsh is undergoing long-term biomass fluctuations.

CHAPTER 7

COMPARISON OF SELECTED PREOPERATIONAL AND OPERATIONAL MEASUREMENTS THAT CHANGED BY MORE THAN TWO STANDARD DEVIATIONS

Introduction

This chapter presents a comparison of selected parameters between the preoperational (1973) and operational (1980) discharge areas as required by the CR3 Environmental Technical Specifications (ETS). This necessitates the reporting of "any parameter measured that changes beyond 2 σ (two standard deviations) of the value measured in the preoperational monitor-ing program."

The measured parameters for the inner (A) and outer (B) discharge bays were gross productivity, net productivity, and respiration. In the discharge marsh area, gross productivity, net productivity, respiration, live biomass, and dead biomass of <u>Juncus roemarianus</u> and <u>Spartina alterniflora</u> were measured. Seasonal means and two standard deviations were calculated for each of the preoperational study parameters. Seasonal means for the operational year that exceeded the two standard deviation limit of the preoperational study are designated by an asterisk.

Results

Seasonal means of the preoperational and operational studies for the inner and outer discharge bay (A and B, respectively) are presented in Table II-69. The parameters used in comparing the preoperational and operational studies in the discharge marsh are given in Table II-70 and II-71.

Station	Seaso	n	P _G , g 0 ₂ ·m ⁻² ·d ⁻¹	P _N , g 0 ₂ ·m ⁻² ·d ⁻¹	R, g 0 ₂ ·m ⁻² ·d ⁻¹
A	Winter	1973 1980	3.25 ± 4.06 1.11	1.40 <u>+</u> 1.38 0.71	1.85 ± 3.22 0.40
	Spring	1973 1980	4.05 <u>+</u> 3.88 2.32	2.13 <u>+</u> 2.28 1.48	1.92 <u>+</u> 1.94 0.84
	Summer	1973 1980	4.40 <u>+</u> 5.36 1.64	2.10 <u>+</u> 3.16 0.81	2.30 <u>+</u> 2.76 0.83
	Fall	1973 1980	3.27 <u>+</u> 0.98 0.71*	1.20 <u>+</u> 0.20 0.52*	2.07 <u>+</u> 0.84 0.19*
В	Winter	1973 1980	3.18 <u>+</u> 2.46 2.82	1.38 <u>+</u> 1.72 1.79	1.80 <u>+</u> 1.26 1.03
	Spring	1973 1980	No data 5.35	No data 3.05	No data 2.30
	Summer	1973 1980	6.64 <u>+</u> 3.78 6.35	3.47 <u>+</u> 2.70 3.42	3.16 ± 1.68 2.93
	Fall	1973 1980	5.53 <u>+</u> 4.32 3.10	2.68 <u>+</u> 1.80 1.73	2.85 <u>+</u> 2.64 1.37

Table II-69. Seasonal means of the inner discharge bays (A and B) from the 1980 operational and 1973 preoperational studies. Asterisks indicate that the 1980 value exceeded two standard deviations (20) of the 1973 preoperational value.

Table II-70.	Comparison of preoperational (1973) with operational (1980) seasonal means for Juncus
	roemarianus in the discharge marsh area. Asterisks indicate those means that exceeded two
	standard deviations (2 σ) of preoperational seasonal means.

		Live Weight, g·m ⁻²	Dead Weight, g·m ⁻²	Net Productivity, g C·m ⁻² ·d ⁻¹	Night Respiration, g C·m ⁻² ·d ⁻¹	Gross Productivity, g C ^{.m^{-2.}d⁻¹}
Winter	1973	475 <u>+</u> 210	880 <u>+</u> 140	No data	No data	No data
	1980	1282*	1291*	6.14	1.25	7.40
Spring	1973	515 <u>+</u> 228	830 <u>+</u> 150	2.40 ± 1.86	2.22 ± 2.06	4.62 <u>+</u> 1.82
	1980	1099*	1433*	9.25*	3.08	12.33*
Summer	1973	525 <u>+</u> 320	980 <u>+</u> 430	3.84 + 2.58	2.30 <u>+</u> 0.82	6.14 <u>+</u> 2.48
	1980	1164*	1519*	3.96	2.77	6.72
Fall	1973	520 <u>+</u> 310	860 <u>+</u> 360	No data	No data	No data
	1980	1130*	1094*	3.55	2.50	6.04

Table II-71. Comparison of preoperational (1973) with operational (1980) seasonal means for <u>Spartina</u> <u>alterniflora</u> in the discharge marsh area. Asterisks indicate those means that exceeded two standard deviations (20) of preoperational seasonal means.

		Live Weight, g·m ⁻²	Dead Weight, g·m ⁻²	Net Productivity, g C ^{.m^{-2.}d⁻¹}	Night Respiration, g C'm ⁻² ·d ⁻¹	Gross Productivity, g C·m ⁻² ·d ⁻¹
Winter	1973	150 <u>+</u> 220	335 <u>+</u> 150	No data	No data	No data
	1980	485*	178*	- 0.28	0.93	0.65
Spring	1973	225 <u>+</u> 175	350 <u>+</u> 170	1.41 <u>+</u> 1.04	1.78 <u>+</u> 2.96	3.18 <u>+</u> 2.30
	1980	412*	400	3.38*	2.15	5.53*
Summer	1973	420 <u>+</u> 200	450 <u>+</u> 133	5.83 <u>+</u> 5.00	1.22 ± 0.74	7.50 ± 4.76
	1980	754*	323	2.16	1.77	3.93
Fall	1973	560 <u>+</u> 232	465 <u>+</u> 266	No data	No data	No data
	1980	970*	290	2.28	1.77	4.05

.

Summary

Discharge Bays

- 1. The mean system gross productivity, net productivity, and nighttime respiration exceeded the two standard deviation limit for the fall operational (1980) season. It should be noted that the fall preoperational (1973) mean was based on only three samples, whereas the 1980 mean was obtained from twelve samples.
- 2. All other operational means from the inner and outer discharge bays fell within two standard deviations of the preoperational means.

Discharge Marsh Area

- Operational (1980) mean live weights of both <u>Juncus roemarianus</u> and <u>Spartina alterniflora</u> were outside the two standard deviation limit of 1973 means. In all cases, operational means for 1980 were higher than 1973 means.
- 2. J. roemarianus dead weight means for 1980 were outside the two standard deviation limit of 1978 means during the winter, spring, and summer. In each case the 1980 means were higher than the 1973 means.
- 3. <u>S. alterniflora</u> dead weight means for winter 1980 were outside the two standard deviation limit of the 1973 means.
- 4. Both <u>J.</u> roemarianus and <u>S.</u> alterniflora gross productivity and night respiration means for 1980 were above the 1973 preoperational two standard deviation limit during the spring season.

- American Public Health Association. 1975. Standard methods for the examination of water and wastewater, 14th ed. American Public Health Association, New York.
- Atkins, W. R. G., and H. T. Poole. 1930. The photo-chemical and photoelectric measurement of submarine daylight. J. Mar. Biol. Assoc. U.K. 16:509-14.
- Boltzman, L. 1886. Ber zwerte haupsatz der mechanischen waime theorie. Gerold, Vienna.
- Brown, K. W., and N. J. Rosenberg. 1968. Errors in sampling infrared analysis of CO_2 in the air and their influence in determination of net photosynthetic rates. Agronomy 60:309-11.
- Brown, S. 1978. A comparison of cypress ecosystems in the landscape of Florida. Ph.D. dissertation, University of Florida, Gainesville.
- Caldwell, J. W., H. T. Odum, K. Benkert, J. Lucas, K. Limburg, and G. Goforth. 1979. Annual record of estuarine ecosystems at Crystal River, Florida. Annual Report given to the Florida Power Corporation, Contract #QEA-00014. Gainesville, Fla.
- Caldwell, J. W., H. T. Odum, K. Benkert, J. Lucas, D. Campbell, G. Goforth, J. Kosik, and W. Coggins. 1980. Annual record of estuarine ecosystems at Crystal River, Florida. Annual Report given to the Florida Power Corporation, Contract #QEA-00030. Gainesville, Fla.
- Copeland, B. J., and W. R. Duffer. 1964. Use of a clear plastic dome to measure gaseous diffusion rates in natural waters. Limnol. Oceanogr. 9:494-99.
- Homer, M. 1977. Seasonal abundance, biomass, diversity, and trophic structure of fish in a salt marsh tidal creek affected by a coastal

power plant. Pages 259-67 in J. W. Gibbons and R. R. Sharity (eds.), Thermal ecology. NTIS, Springfield, Va.

- Hornbeck, D. A. 1979. Metabolism of salt marshes and their role in the economy of a coastal community. Master's thesis, University of Florida, Gainesville.
- Kemp, W. M. 1977. Energy analysis and ecological evaluation of a coastal power plant. Ph.D. dissertation, University of Florida, Gainesville.
- Kemp, W. M., W. H. B. Smith, H. N. McKellar, M. E. Lehman, M. Homer, D. L. Young, and H. T. Odum. 1977. Energy cost-benefit analysis applied to power plants near Crystal River, Florida. Pages 508-43 <u>in</u> C. A. S. Hall and J. W. Day, Jr. (eds.), Ecosystem modeling in theory and practice: An introduction with case histories. John Wiley and Sons, New York.
- Lehman, M. E. 1974. Oyster reefs at Crystal River, Florida, and their adaptation to thermal plumes. Master's thesis, University of Florida, Gainesville.
- Lotka, A. J. 1922. Contributions to the energetics of evolution. Proc. Nat. Acad. Sci. 8:147-51.
- McConnel, W. J. 1962. Productivity relations in carbon microcosms. Limnol. Oceanogr. 7:335-43.
- McKellar, H. N., Jr. 1975. Metabolism and models of estuarine bay ecosystems affected by a coastal power plant. Ph.D. dissertation, University of Florida, Gainesville.
- McKellar, H. N., Jr. 1977. Metabolism and model of an estuarine bay ecosystem affected by a coastal power plant. Ecol. Modelling 3:85-118.

- McKellar, H. N., Jr., and W. H. B. Smith. 1981. Ecosystem level assessments should be emphasized over population level assessments. Unpub. manus.
- National Academy of Science. 1980. Fisheries ecology: Some constraints that impede advances in our understanding.
- Odum, H. T. 1967. Biological circuits and the marine ecosystems of Texas. Pages 99-157 in T. A. Olson and F. J. Burgess (eds.), Pollution and marine ecology. Interscience Publ., New York.
- Odum, H. T. 1971. Environment, power, and society. John Wiley and Sons, New York.
- Odum, H. T. 1974. Energy cost-benefit models for evaluating thermal plumes. Pages 628-49 in J. W. Gibbons and R. R. Sharity (eds.), Thermal ecology. NTIS, Springfield, Va.
- Odum, H. T., J. W. Caldwell, K. Benkert, J. Lucas, R. Knight, and D. Hornbeck. 1978. Annual record of metabolism of estuarine ecosystems at Crystal River, Florida. Annual Report given to the Florida Power Corporation, Contract #QEA-00002. Gainesville, Florida.
- Odum, H. T., and C. M. Hoskins. 1958. Comparative studies on the metabolism of marine waters. Publ. Inst. Mar. Sci. Univ. Tex. 5:16-46.
- Odum, H. T., and R. F. Wilson. 1962. Further studies on reaeration and metabolism of Texas bays: 1958—1960. Publ. Inst. Mar. Sci. Univ. Tex. 8:23—55.
- Odum, H. T., W. Kemp, M. Sell, W. Boynton, and M. Lehman. 1977. Energy analysis and the coupling of man and estuaries. Environ. Manage. 1(4):297-315.
- Odum, H. T., M. J. Lavine, F. C. Wang, M. A. Miller, J. F. Alexander, Jr., and T. Butler. 1980. A manual for using energy analysis for plant

siting. Report to the Nuclear Regulatory Commission, Center for Wetlands, University of Florida, Gainesville.

- SAS Institute. 1979. SAS users guide. SAS Institute, Inc., Raleigh, N.C.
- Smith, W. H. B. 1976. Productivity measurements and simulation models of a shallow estuarine ecosystem receiving a thermal plume at Crystal River, Florida. Ph.D. dissertation, University of Florida, Gainesville.
- Truesdale, G. A., A. L. Downing, and G. E. Lowden. 1955. The solubility of oxygen in pure water and seawater. J. Appl. Chem. 5:53-62.
- U.S.A.E.C. 1973. Final environmental statement for Crystal River Unit 3, Florida Power Corporaion, docket no. 50-302.
- U.S. Department of Commerce. 1981. Tide tables: East coast of North and South America including Greenland. National Oceanic and Atmospheric Administration.
- Young, D. L. 1974. Studies of Florida Gulf coast salt marshes receiving thermal discharges. Pages 532-50 in J. W. Gibbons and R. R. Sharity (eds.), Thermal ecology. NTIS, Springfield, Va.

APPENDIX A

SUMMARY OF DATA FROM THE INNER DISCHARGE BAY (A) AND ITS CONTROL BAY (E)

EXPLANATORY KEY OF TABLE CAPTIONS IN APPENDIX A

OBS___Observation #.

STATION-See Figure II-lb.

SEASON-See descriptions in chapter 3.

PG—System gross productivity (g $O_2 \cdot m^{-2} \cdot d^{-1}$).

PN—System daytime net productivity (g $0_2 \cdot m^{-2} \cdot d^{-1}$).

R—System night respiration (g $0_2 \cdot m^{-2} \cdot d^{-1}$).

PLANKPG—Plankton gross productivity (g $0_2 \cdot m^{-2} \cdot d^{-1}$).

PLANKPN—Plankton 24-hour net productivity (g $0_2 \cdot m^{-2} \cdot d^{-1}$).

PLANKR—Plankton 24-hour respiration (g $0_2 \cdot m^{-2} \cdot d^{-1}$).

INSOL—Insolation (kcal·m^{-2·d⁻¹).}

TEMP-Temperature (°C).

SAL—Salinity (%.).

EXTINCT—Extinction coefficient (m^{-1}) .

MONTH-(Self-explanatory).

DAY-Day (calculated as percentage of 30 or 31 days in the month).

YEAR-(Self-explanatory).

PRRATIO-(calculated as PG/2R).

ECOLEFF-Ecological efficiency (calculated as [4 x PG]/INSOL).

								STAT	icx=a								
065 :	STATICH	SEASON	86	PH	R	PLANKPS	PLAKKPN	PLANKR	INSOL	TENP	SAL	EXTINCT	MONTH	DAY	YEAR	PRRATIO	ECOLEFF
1	A	FA	3.50	1.30	2.20	1.00	9.69	Q.40	4490	25.0	27.5	•	1	0.0	73	0.7955	0.00311804
È	ĥ	FA	2.70	1.10	1.60	0.70	0.50	0.20		22.0	27.0		1	0.9	73	0.8438	
4	Ŕ	FA	3.60	1.20	2.40	0.70	0.50	0.20	705	21.5	27.5	•	1	P.0	73	0.7500	-
5 6	n A	F EI UT	1.83	1 50	0.71	¥.4V	¥.7¥	¥.2¥	408E	20.0	20.5	•	1	73.0	73	2.7727	,
7	Â	ΨĪ	2.34	0.67	1.67					16.0	16.2	•	2	0.0	73	0.7006	
8 q	fi A	3P SP	4.10 1/20	4.80	4.10	•	•	•	•	28.3	22.3	•	ว 5	33.0 37.0	73	1.0381	•
10	Ŕ	ŠP	3.70	2.60	1.10			•	6500	32.0	28.0		5	80.0	ŻŠ	1.6818	0.00227692
11	fi A	5P 5P	2.40	1.70	9.70 1 80	1 60	1 70	ó 40	6494 5874	44.0 30.7	21.1	•	5	81.9 87.0	73	1.7143	0.00144784
13	ň	SP	3.00	1.50	1.50					31.5	22.3	•	ð	47.0	73	1.0000	
14	A A	42 92	5.70	3.50	2.20	•	•	•	•	0.EE 0.FF	28.0	•	6	57.0	23 73	1.2455	•
16	Ä	ŠP	3.00	2.10	0.40				•	3 3 .5	27.0		6	60.0	73	1.6667	
17	fi A	92 92	1.30	0,00 2,60	1.30	4.70	2.50	2 20	-	13.3 1 FF	26.5	•	5	63.0 77 0	73	0.5000	
19	Å	SP	3.80	1.70	2.10	v	2.J¥		:	32.5	27.0		6	70.0	73	0.9048	•
20	Ĥ	SP	2.20	1.00	1.20	•	•	-	•	32.0	26.0	•	6	73.0	73	0.9167	
22	n A	SU SU	10.70	5.90	4.80		•	:	:	31.3	22.5	:	7	23.0	73	1.1146	-
23	A	SU	§.10	3.50	2.60	1.00	0.70	¢.3¢	6115	34.0	27.5	•	7	87.0	73	1.1731	0.00 3 99019
25	ri A	2U 2U	2.20	0.90	1.30	0.60	0.50	0.10	2889	34.0	26.0	•	ĕ	10.0	73	0.8462	0 00304604
26	Â	SU	5.40	1.90	3.50	1.24	A . EA	A.1.A		30.5	27.5	•	8	73.0	73	0.7714	
28	Â	SU	2.90	1,40	1.50	1.30	v <i>.</i> . v	v. v	•	31 .2	27.5		8	80.0	έř	0.9667	•
29	A	<u>SU</u>	2.40	2.30	9.10	•	•		•	93.Q	28.5	•	8	83. 0	73	12.0000	
	n A	30 30	3.70	1.10	2.60	:	•		:	32.0	27.5	•	8	90.0	73	♦.7115	•
32	Â	SP	0.40	0.14	0.26	0.24	0.21	0.03		26.3	24.6	1.90	4	23.0	77	0.7692	
11 34	Ĥ	3P SU	0.18	-0.10	0.28	0.29	-0.65	0.94	4200	35.1	28.0	2.00	°7	0,0	77	0.3214	0.00017143
35	Â	SÜ	1.80	1.80	0.00	-0.39	-0.92	0.53	7400	<u>Ę.</u> Ę	29.3	1.30	7	37.0	77	A . D. / AA	0.00097297
-36 -37	n A	20 20	0.41 -0.13	-0.45	0.23	0.04 0.14	-0.04	0.49	337V 4780	34.9	30.1	2.30	8	30.0	77	-0.2031	-0.00010879
38	, Ř	ŠŪ	-0.28	-0.45	0.17	2.03	0.25	1.78	6030	34.3	90.9	2.30	8	93.0	77	-0.8235	-0.00018574
ታግ ቤሳ	11 A	20 20	1.50	9.44	V.84 076	1.44 1.84	1.10	0.11	1879 5230	30.7	28.1	1.40	8	77.0	27	1.7500	0.00187380
41	Ą	SU	1.70	1.35	0.35	0.73	0.53	0.20	6579	33.8	29.6	1.90	9	27.0	77	2.4286	0.00103359
42	ก A	50 112	0.15	0.15	0.00	1.55 6 97	1,15 6 72	0.40	6462 4897	10.8 15 9	12.5 12.5	1,40	4	67.0	77	2 4500	0.0004285
44	Ä	ĔŇ	i.92	0.13	1.7	9.66	0.37	0.29	5466	33.8	31.2	1.50	10	Ó.E	77	0.5363	0.00140505
佔	Ĥ	FA	0.83	9.16	9.67 0.66	0.97 6.57	0.78 6.42	0.14 0.14	52.38 7472	33.4	31.1	2.10	10 10	7.9 57.0	77	9.6144	C8LL0000.0
47	â	FA	¢.48	¢.48	0.00	9.66	6.4 0	9.26	6227	26.1	28.0	1.10	10	30 ¢	77		EE80E000.0
48 64	A A	FA	Q.16 0.27	0.06	0.10	0.68 0.69	0.56	0.12 0.77	2961 Ենել	27.3	29.7	1.40	11	470 470	77	0.8000	0.00021614 0.00024319
50	Å	FA	0. H	0.34	0.00	0.61	0.31	0.30	4347	23.3	30.0	1.40	11	50.0	<u>77</u>	• • • • • • • • • •	0.00035887
51 52	ft Å	FA	0.F	0.37	0.02	0.06	~0.01	0.07	2619	23.8 25 L	25.6	1.20	11	97.Q 99 0	77	9.7500	0.00054565
53	Ä	FA	Eð. Ø	0.63	0.00	0.54	0.37	0.17		22.7	29.0		12	0.E0	77		
54	ĥ	FA	0.48	0.48	0.00	0.28 0.24	0.24	0.04 0.04	1 54	22.9	28.5	•	12	07.0 0 F	78	1 1500	0 00578616
56	Â	υî	0.41	0.49	0.44	0.40	0.31	0.07	453	13.1	24.5	•	2	7.0	78	1.0568	0.00821192
57	Â	UT .	0.51	0.51	0.00	0.79	0.79 0.29	0.00	1013	17.4	26.9	<u>م 5</u> 7	2	4.98 4	78 78	•	0.00201382
59	â	UI	0.64	0.64	0.00	¢.65	¢.54	0.11	2028	18.4	22.7	1.70	È	13.0	78		0.00126233
60	A	UI	2.27	2.15	0.12	A / D	A. 10	<u>م م</u>	4221	19.8	19.1	2.27	E	63.0	78	9.4583	0.00215115
61 62	n A	41 U	v.₩D 0.80	0.41 0.44	0.36	0,90 0,90	0.73	0.17	4383	21.5	16.7	1.55	E	49 .0	78	1.1111	0,00073009
63	Â	SP	<u>10</u> E	1.52	1.44	1.01	0.78	0 23	4201	26.8	20.1	2.83	4	23.0	78	1.0101	0.00286598
64 75	FI A	26 26	1.78 5.77	2.08	1.70	1.40	1.07	0.11	4344 5408	27.5	20.0	1.36	4 4	27.0 73.0	78 78	1.1118	0.00128/8/
22	п			7177	4 00	1 68	1.60	0.08	3551	25.5	22.6	1.55	ų	77.0	78	0.8942	0.00380738
	Â	26	1.36	1.44	1.84						A	- 10					
67	n A A A	ሪዞ ሪዞ ሪዞ	1.36 5.35 2.95	1.44 3.03 1.89	2.32	3.83	3.78 2.75	0.05 0.60	4924 2921	10.3 71 7	23.8	1.79	5 5	30 0	78	1.1530	0,00434696 0,00740277
67 68 69	п А А А	5P 5P 5P	1.36 5.35 2.85 4.68	1.44 3.03 1.88 1.72	2.32 0.46 2.46	3.83 3.35 1.99	3.78 2.75 1.67	0.05 0.60 0.32	4924 2921 2664	30.5 31.3 29.1	23.7 23.7 20.8	1.36	5 5	30.0	78 78 78	1.1530 1.4844 0.7905	0.00434606 0.00340277 0.00702703
67 68 69 70 70	⊓ Å Å Å	2P 2P 2P 2P	1.36 5.35 2.85 4.68 9.58	1.44 3.03 1.88 1.72 6.33	2.32 0.96 2.96 3.25	3.83 3.35 1.99 2.25	3.78 2.75 1.67 2.08	0.05 0.60 0.32 0.17 0.27	4924 2921 2664 5569	30.5 31.3 29.1 30.5	23.7 29.8 21.2 24.4	1.79 1.36 2.83 1.89	5555	27.0 30.0 67.0 70.0 27 0	78 78 78 78 78	1.1530 1.4844 0.7905 1.4738	0,00434606 0.00340277 0.00702703 0.00688045 0.00688045
67 68 69 70 71 72	口 合 合 合 合	ሪዮ ሪዮ ሪዮ ሪዮ ሪዮ ሪዮ ሪዮ ሪዮ ሪዮ ሪዮ ሪዮ ሪዮ ሪዮ ሪ	1.36 5.35 2.85 4.68 9.58 9.58 2.87 2.29	1.44 3.03 1.88 1.72 6.33 2.02 1.33	2.32 0.96 2.96 3.25 0.85 0.96	3.83 3.35 1.99 2.25 1.65 2.36	3.78 2.75 1.67 2.08 1.42 2. 3 6	0.05 0.60 0.32 0.17 0.23 0.00	4924 2921 2664 5569 4278 4036	30.5 31.3 29.1 30.5 33.8 33.8	23.7 29.8 21.2 24.0 23.7	1.79 1.36 2.83 1.89 1.70 1.36	555566	27.0 30.0 67.0 70.0 27.0 30.0	78 78 78 78 78 78	1.1530 1.4844 0.7905 1.4738 1.6882 1.1927	0,00434606 0.00340277 0.00702703 0.00688045 0.00268350 0.00268350 0.00226457

								STATI	CX=E								
JBS	STATION	SEASON	fç	PH	R	PLANKPC	PLANKPK	PLANKR	INSOL	TEMP	SAL	EXTINCT	MINTH	Day	YEAR	PRRATID	ECOLEFF
B 78901222222222222222222222222222222222222	STATION B C C C C C C C C C C C C C C C C C C C	SUM SUM SUM SUM SUM SUM SUM SUM SUM SUM	F 54323476478522874494192777854359679878295782915787219499454533468453332112 22211332244742875	N 2.1.1.2.1.1.2.1.0.0.1.1.1.1.0.1.3.2.4.2.2.1.1.6.3.3.4.4.4.4.4.7.5.4.2.5.6.2.2.3.1.1.2.1.2.2.1.1.1.1.1.0.0. 1.0.0.0.1.2.2.1.3.2.4.2.1.2.3.5. 66447087146815462235554673483311994247386617045514578180866226985979475131303240774655428 1.0.1.0.0.0.1.2.2.1.3.2.4.2.1.2.3.5. 6644708714685146831684673483311994247386617045514578180866226985979475131303240774655428 1.0.1.0.0.0.1.2.2.1.3.2.4.2.1.2.3.5. 1 0.0.1.2.2.1.3.2.4.2.1.2.3.5. 0.0.1.2.2.1.3.2.4.2.1.2.3.5.	R 3310231220146629846447774691096072488851294463422322421110001 11100111111314542724691644	PLANKPG 0.00000000000000000000000000000000000	PLANKPX 0.251 0.226 0.227 0.211 0.227 0.227 0.227 0.227 0.226 0.226 0.226 0.226 0.226 0.226 0.226 0.227 0.2777 0.2777 0.2777 0.2777 0.2777 0.2777 0.2777	PLANKR 0.24 0.3700000000000000000000000000000000000	INSCRL 6227 43417 157 157 157 157 157 157 157 1	IE 182141517.854.801111118242222282233332282929212229222222222222222	St 22929232242222122273800022229253491401380949494332272444453890000011407629578434	EXTINCT 0.90 0.90 0.90 0.90 1.42 1.01 1.12 1.131 1.131 1.131 1.131 1.131 1.135 1.131 1.135	MU 111111112222273333444455555666677778888899100001111111222111112333334444555556666	D & 45994& & &&1&99227723&7297822771299777 227349955512785 15&9 7712&229979 A 097079979770333379374770707070703703703703703707903707903707037070970970970970970970970970970970970970	YEAR 7777777777777788888888888888888888888	PRRATIB 0.91406 0.71951 0.96774 1.88667 0.72121 1.6714 0.72121 1.6714 0.78265 1.37097 0.78261 1.07547 0.94468 1.21705 1.175900 1.13208 1.07535 0.75000 0.98536 0.78250 1.1228 1.07335 0.75000 0.98536 0.78251 1.0438 0.77626 0.78251 1.0438 0.77536 0.88273 0.86716 0.88103 0.86716 0.87719 0.86716 0.87719 0.86716 0.87719 0.86716 0.86716 0.87719 0.86716 0.87719 0.86716 0.87719	ECHLEFF 0.0037578 0.0043762 0.0032425 0.0026041 0.0055738 0.0025738 0.0035738 0.0043576 0.0043576 0.0043576 0.0043576 0.0041933 0.0024070 0.0018256 0.0021903 0.0021903 0.0021903 0.0036239 0.0036239 0.0037249 0.0037249 0.0037249 0.0037249 0.0037249 0.0037249 0.0037249 0.0037249 0.0037431 0.0054639 0.0078228 0.0044931 0.0078228 0.0074826 0.0074826 0.0074826 0.0074826 0.0074826 0.0074826 0.0074826 0.0074826 0.0074826 0.0074826 0.0074826 0.0074826 0.0074826 0.0044534 0.0074826 0.0045342 0.0034049 0.0034049 0.0034049 0.0034049 0.0034049 0.0034049 0.0034049 0.0034049 0.0034035 0.0044331 0.0038462 0.
288	Ē	SU	9.26	5.51	3.75	דע. ד ש'אי	רע. ס ו.`יא	1.06	4783	30.3	26.3	1.77	ź		79 79	1.23467	0.0077441
289 290	Ē	2U 2U	5.53 5.05	3.34 2.38	2.19 2.67	5.01 8.02	4.20 6.86	0.81 1.16	3016 3328	28.9 29.0	22.6 22.8	1.36 1.48	7 7	77 81	79 79	1.26253 0.94569	0.0073342 0.0060697

								STATI	GN=E								
085	STATIDX	SEASCH	PG	PH	R	PLANKPG	FLANKPN	PLANKR	INSOL	TEMP	SAL	EXTINCT	ngxth	DAY	YEAR	PRRATID	ECOLOFF
291 292	E	5U SU	7.63	3.55	4.08	2.20	1.43	0.77 0 94	3262 3170	29.3 29.3	22.3 27.7	1.13	8 8	19 27	79 79	0.93505 0.99839	0.0093562
293	Ē	ន័រ	8.41	4.41	4.00	2.37	1.51	0.86	4265	29.6	23.7	2.43	8	61	79	1.05125	¢.0078875
214	E	82 112	8.62	4.45	3.67	2.31	1.74	0.57	4506	29.9	23.0	1.55	8	65 27	79 79	1.17439	0.0076520
296	Ē	ŠŬ	3.64	0.72	2.92	2.11	1.56	0.55	3343	28.8	25.1	1.62	Ę	30	79	0.62329	0.0043554
297	Ę	FA	7.13	3.23	3.99	2.30	2.01	9.29	4263	25.3	22.2	1.98	10	16	79	0.91410	0.0066501
248	E F	F H F A	8.34	3.38 1.33	3.21	1 23	2.03	0.41	3/81	29.2	26.5	1.40	10	۲۹ 61	79	0.77254	0.0050173
300	Ē	FA	4.54	2.04	2.50	1.71	1.37	0.34	2812	25.3	26.4		10	65	79	0.90800	0.0064580
301	Ē	FA	7.19	2.28	4.91	Q.59	Q.92	9.97	2213	23.9	25.3	1 71	11	7	79 79	0.73218 1 1705L	0.0129959 0.0086181
EQE	Ē	FA	2. 45	1.72	1.23	¢.34	-0.09	¢.43	2478	15.5	28.1	*.4*	11	53	79	1.19919	0.0047619
驰	£	FA	4.40	2.69	1.71	0.20	E0.0	0.17	2651	16.1	27.7	ר י `ר	11	57	79	1.28655	0.0066340
100	د E	EA	1.36	1.14	0.19	-9,94	-4.44	V.VV	2328	11.0	28.9	2.13	12	3	79	3.57895	0.0023368
307	£	EA	3.67	1.26	2.41	0.08	0.08	0.00	780	20.2	24.8		12	48	79	0.76141	0.0149796
308	E F	FA 117	1.04 0.65	0.63	2.34	0.26	0.00 6.54	0.26	231	18.1	24.8	1 76	12	52 11	74 80	0.63548	0.0326407 0.0027907
TIO	Ē	ŪÊ	1.01	0.61	0.40	-0.06	-0.06	:	2351	11.0	26.9	1.46	i	16	80	1.26250	0.0017184
311	Ę	UI	P9.E	1.49	1.60	0.11	-0.07	0.18	1810	17.0	24.4	•	1	58	80	0.96563	0.0068287
쁆	Ē	UE.	1,91	1.33	0.58	0.14	-0.04	V.23	2010 3952	10.0	25.5	•	2	٥1 لا	80 80	1.64655	0.0019332
314	Ē	ΨĪ	1.79	0.70	1.09		an tana		3120	10.1	25.9		2	Ž	80	0.82110	0.0022949
315	E	UT UT	1.89	1.12	0.77	0.44	0.98	0.36	3773 2179	17.5	21.7	1.42	2	79 82	80 80	1.22727	0.0020037 0.0062650
五?	Ē	10	1.53	1.29	0.24	0.83	0.83	0.00	3818	18.2	20.9	1.42	Ê	26	80	3.18750	0.0016029
318	Ĕ	<u>er</u>	2.78	1.00	1.78	1.27	0.45	0.78	2525	20.2	18.6	1.80	Ę	24	80	0.78090	0.0044040
114	E	UI UI	3.70	2.07	1.63	0.64	0.42	0.22	5690	18.2	20.6	1.21	Ē	00 71	80 80	1.13497	0.0029134
321	Ē	SP	2.09	9.71	1.38	¢.89	0.55	9.34	2184	22.3	18.5	1.62	ų	13	80	0.75725	0.0038278
322	E	5P 5P	4.57	3.49	1.08	0.63	0.63	0.00	5125	21.2	18.8 21 L	1.43	4	17	80 90	2.11574	0.0035668
324	Ē	ŠP	6.89	4.22	2.67	6.83	0.70	0.13	4189	27.8	18.6	1.79	Š	52	83	1.29026	0.0065791
325	Ē	SP	4.65	2.48	2.17	1.75	1.46	0.29	3387	27.5	19,1	1.62	5	55	80	1.07143	0.0054916
120	L F	3P SP	6.03	J. JI 7 29	2.74	0.89	1.08	0.77	4348	26.8	18.0	1.42	5	44	89 80	1. 29087	0.0043819
328	Ē	SP	8.69	4.95	3.74	0.90	0.60	0.30	5140	28.8	21.5	0.89	6	57	80	1.16176	0.0067626
129	E	2P 51	6.94 L 67	2.79	4.15	1.49	1.47	0.02 0.01	4768	24.4	1/ 9	1.55	6	60 99	89 80	0.83614 0.85792	0.0078221
331	Ē	รับ	7. 31	5.11	2.20	2.36	2.22	0.14	5467	29.6	16.4	1.44	7	Ë	80	1.66136	0.0053495
332	E	50	11.30	6.01	5.29	2.04	1.50	0.54	5006	E. ØE	19.2	1.21	7	55	80	1.06805	0.0090292
쁊	Ē	30 SU	3.70	2.35	1.59	1.70	1.27	0.43	3758	31.3	17.9	1.55	8	10	80	1.23899	0.0041937
335	E	क्ष	7.20	3.52	3.68	2.06	1.65	0.41	4724	11.1	17.8	1.48	8	13	80	0.97826	0.000965
336	E F	20 20	9.60	5.20	4.35	3.10	2.81	0.84	4442	70 6	18.4	0.44	8 8	JZ 55	89 80	1.10343 1 Aut 97	0.0080448
3EE	Ĕ	รับ	8.36	4.40	3.96	3.89	3.29	0.60	4575	29.4	23.1	1.70	Š	94	80	1.05556	EP0E700.0
939	Ę	50	9.76	4.91	4.85	3.49	2.79	0.69	4397	29.8	23.6	1.36	8	97	80	1.00619	0.0088788
340	Ĕ	20 20	8.87	4.24	4.63	1.96	1.46	0.50	3692	28.2	26.1	1.03	r P	43	80	0.95788	0.0096100
342	Ē	ĒŔ	8.49	4.13	4.36	2.99	2.35	0.64	3207	30.3	24.1	1.25	٩	90	80	0.97362	0.0105893
343	Ē	FA	7.92	3.41	4.51	3.09	2.51 ^ 75	0.58 10 74	1661 7479	10.5 27 X	21.9	1.11	4 10	43 68	89 80	0.8/805 1 90761	9.9986486 0.6657669
345	Ē	FA	10.77	6.67	4.10	0.94	Å . 97	0.02	3354	24.5	26.1		ÎÒ	52	80	1.31341	0.0128444
346	Ę	FA	8.90	5.16	3.74	0.65	0.64	0.01	2228	23.0	24.1	1.06	10	99	80	1.18984	0.0159785
348 348	Ē	r n Fr	5.47	00.E	2.47	2.19	1.10	1.09	1792	19.4	25.8	1.17	11 11	47	80	1.10729	0.0122098
349	Ē	FA	4.01	1.50	2.51	2.14	1.11	1.03	2663	20.2	24.5	1.31	11	50	80	0.79880	0.0060233
350	E	FA	2.14	1.99 2 71	0.55 A 24	0,40 0,30	0.35	0.05 0.10	3607	14.6 16 म	24.6	1.70	11 11	47 94	80 80	1,44545	0.0023732
352	Ē	FA	2.92	1.54	1.38	¢.42	0.42	0.00	1537	16.1	23.3	0.97	12	52	80	1.05797	0.0075992
353	Ē	Fft	5,03	2.76	2.27	Q 41	0.11	Q.3Q	2249	15.8	22.7	1.17	12	55	80	1.10793	0.0089462

.

APPENDIX B

SUMMARY OF DATA FROM THE OUTER DISCHARGE BAY (B) AND ITS CONTROL BAY (D)

.

EXPLANATORY KEY OF TABLE CAPTIONS IN APPENDIX B

OBS—Observation #.

STATION-See Figure II-1b.

SEASON-See descriptions in chapter 4.

PG—System gross productivity (g $0_2 \cdot m^{-2} \cdot d^{-1}$).

PN—System daytime net productivity (g $0_2 \cdot m^{-2} \cdot d^{-1}$).

R—System night respiration (g $0_2 \cdot m^{-2} \cdot d^{-1}$).

PLANKPG—Plankton gross productivity (g $0_2 \cdot m^{-2} \cdot d^{-1}$).

PLANKPN—Plankton 24-hour net productivity (g $0_2 \cdot m^{-2} \cdot d^{-1}$).

PLANKR—Plankton 24-hour respiration (g $0_2 \cdot m^{-2} \cdot d^{-1}$).

INSOL-Insolation (kcal· $m^{-2} \cdot d^{-1}$).

TEMP___Temperature (°C).

SAL—Salinity (%.).

EXTINCT—Extinction coefficient (m^{-1}) .

MONTH-(Self-explanatory).

DAY-Day (calculated as percentage of 30 or 31 days in the month).

YEAR-(Self-explanatory).

PRRATIO___(calculated as PG/2R).

ECOLEFF—Ecological efficiency (calculated as [4 x PG]/INSOL).

 STATICX=B STATICX=B																	
ŒS	STATION	SEASON	Ps	P K	R	FLAKKPG	PLANKPN	PLAKKR	IKSOL	TENP	SAL	EXTINCT	MORTH	DAY	YEAR	PRRATIO	ECOLEFF
1234567890 10111213	*****	VI VI FA FA VI SU SU SU SU SU	4.43 3.44 1.85 3.85 4.41 2.44 3.42 4.81 8.56 6.64 6.64	2.37 1.75 0.98 1.96 2.06 0.41 2.19 2.19 5.10 3.42	2.06 2.24 0.87 1.84 2.93 2.03 1.73 2.62 3.46 2.62 2.94	1.78 0.74 0.25	0.53 -0.72 -0.22 2.85	1,25 1,46 0,47	- - - - - - - - - - - - - - - - - - -	24.4 25.2 13.4 24.9 24.8 14.5 26.5 26.2 30.0 7	26.4 27.7 19.9 28.0 25.0 22.0 21.2 26.9 25.7 25.9	1.00	1111111155555	0.55 0.57 0.67 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	73 73 73 73 73 73 73 73 73 73 73 73	1.07524 0.89063 1.06322 1.01852 0.85154 0.60099 1.13295 0.91794 1.23699 1.15267 1.01839	· · · ·
14 15 16 17 18 19 20	• • • • • • • • • • • • •	20 20 20 20 20 20 20 20 20 20	4.54 7.10 7,43 8.48 8.56	2.84 3.40 4.77 4.44 3.97	1.90 3.70 3.16 4.04 4.59				•	30.2 30.0 31.6 31.6 90.9 33.1	27.7 16.0 26.3 18.3 25.3	0.88 1.29 1.10 1.23 1.27 1.23 1.23 1.38	66667777	33.0 33.0 47.0 47.0 7.0 23.0 33.0	73 73 73 73 73 73 73 73 73	1.19474 0.95946 1.25475 1.04950 0.93246	· · · ·
21223456728991123345678994124444444444444444444444444444444444	۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵	SSSFFFFSSSSFFFFFFFFFFFFFFFUUUUUUUUUUUU	- 948734011850952838665533312323201131323468685383383888478 127493449492525252098885418114284648889725485423245294821138338848478	599922269419425144922111111122094111201234551154249 5999224438838659876249714358509943349578422894753459578 599921543883865987624971435850994334957842289475345978	37431191371429292932932110011110001011112392229522 360081577298588900815772998588999957894898908817898897828 37828985889999891898998989898989898989898989	4 5222 11251692253122101110000101 127331266298468616772278 7449474866298988 1273312662256247 1273312662 12753167 12753167 12753167 12753167 1275316 12753167 1275316 1275316 1275316 1275316 1275316 1275317 1275316 1275316 1275316 1275317 127537 1275316 127537 1275777 1275777 1275777 1275777 1275777777777 127577777777777777777777777777777777777	3.017 3.017	0 11302 21100000000000000000000000000000000000	474557807003425457846822449264 47557807003422449264 47557807003422449545554622449264 4274554866822449264 140132022449801 155138801 1551388214801 155138801 1551388214801 155138801 155158801 1551388000000000000000000000000000000000	31223333255565474747334432233681344712222111111111222222222222222222222	24437922485704677923475555780477922347555578047792234757774223475555777446555578047947792234757774662222394757774662222394757774662555780477974662223447577746622234475777466222344757774662223447577746622234475777466222344757774662223447577746622234475777466222344757774662223475777466222347577746622234757774662223475777466222347577746622234757774662223475777466222347577746622234757774662223475777466222347577746622234757774662223475777466222347577746622234757777466222347577774662223475777746622234757777466222347577774662223475777746622234757777466222347577774662223475777746622234757777466222347577774662223475777777777777777777777777777777777	101 1242 2613003000000000000000000000000000000000	77788446777888899999900011111112222223333444455555566667	1 1	73333333777777777777777777777777777777	1.25%67 0.634%44 0.94831 0.93484 1.36017 1.22485 1.31519 0.40000 1.16125 0.75802 0.30488 0.92788 1.05139 1.22485 1.22551 0.94888 0.92788 1.00814 0.94500 1.10492 1.60648 1.00814 0.94500 1.10492 1.60648 1.00814 0.94500 1.10492 1.60648 1.00814 0.94500 0.94500 1.16471 1.25521 0.91071 1.25521 0.91071 1.55852 2.31034 0.50000 0.74932 1.37288 1.00843 7.88889 1.55466 0.83553 0.91176 1.15847 2.65254 0.83251 1.39298 1.26855 0.86053 0.79497 1.16877 1.26855 0.86053 0.79497 1.16877 1.26855 0.86053 0.79497 1.16877 1.26855 0.86053 0.79497 1.16877 1.26855 0.86053 0.79497 1.16877 1.26855 0.86053 0.79497 1.16877 1.26855 0.86053 0.79497 1.16877 1.26855 0.86053 0.79497 1.26855 0.79497 1.26855 0.86053 0.79497 1.26855 0.86053 0.79497 1.26855 0.79497 1.26855 0.86053 0.79497 1.26855 0.86053 0.79497 1.26855 0.86053 0.79497 1.26855 0.86053 0.79497 1.26855 0.86053 0.79497 1.26855 0.86053 0.79497 1.26855 0.86055 0.8655 0.8655 0.8655 0.8655 0.8655	0.0011429 0.0046324 0.0037343 0.0006276 0.0037343 0.00067533 0.0024261 0.0051862 0.005454 0.005454 0.0045298 0.0043631 0.00242097 0.0043769 0.0043769 0.0043769 0.0043769 0.0046735 0.0024376 0.0024376 0.0024396 0.0024396 0.0024396 0.0024396 0.0024396 0.0024396 0.0024396 0.0024396 0.0024396 0.0024396 0.0024396 0.0024396 0.0024396 0.0024396 0.0024396 0.0024396 0.0024397 0.005751 0.005751 0.005751 0.005751 0.005751 0.0057483 0.0057483 0.0057483 0.0057483 0.0057483 0.0057483
71 72 73 74	6 66 65 66	SU Su F a	5.00 8.26 6.97 6.22	5.22 5.22 4.08 1.88	2.37 3.04 2.89 4.34	5.14 4.24 2.11	4.64 3.93 1.81	0.50 0.31 0.30	4036 3794 3874	30.9 31.0 31.5	24.7 25.2 22.7	1.31 1.27 1.42	? ? 8	70.0 73.0 17.0	78 78 78	1.35855 1.20588 0.71659	0.0081863 0.0073484 0.0064223

								STAT	- א=א								
oes s	TATION	SEASON	PG	PH	R	PLANKPG	PLANKPN	PLANKR	INSOL	tenp sa	LE	TINCT	KONTH	Day	YEAR	PRRATIO	ECOLEFF
7777789888888888899912994567899012994567890112945678901129456789012294567890129949129456789011294567890111111111111111111111111111111111111	***************************************	AUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	1866999789985555999210 4222223591799061029116597688711991775745549645722396457225961119917757455496457221259647245424542454267225924 55592929244759759955455455997 199795862159096102911659760788715921737555496457722132542672755554454572275224	14321444154222211110 1111112310349473097497318817299348598230959982149558701540434 4073739355454824182512 8311332217349473189497318817299348598230959988219002212321111112	24232433144333141100 21111121134113499470624587479837941858159819220012289910110000010	134211211343 000100111120011444 4435235748247437201221 000002000000010010000 5488544981738 97705958755577412 033489784854801881025903 9854442154260594898388 888544981738 977051592631238614 83439784854801881025903 985444215426096001001000	124211211332 0000001111200111343 3.335124748245332001210 000002000000000000000000000000	00000000000000000000000000000000000000	2443397345 22473973945 22172222120402047339444435314544457033445705623534551062039825400 221222212222120847312994443531454000644377033445564235340812308178012302222222222222222222222222222222222	11433339397282727272719057445824242425242424252424242526782772262728272722272227222722225855556451172221927224242452424245242424524242452424245242424524242452424245242424524242452424245242424524242452424245242424524242444444	8411519776729657055531642442075971141565977079353479663944013108676316000125	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	888990001111111111111112221111112333334445555566667777888889999000111111111111111222223339944	299777 22773499955512785 1569 7712662388237812662371166 1559 451156 78226711 9370330377079037070785 12785 127093700370387071931570767157037938236814792698137	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.89882 1.09625 1.28458 0.68457 0.89862 1.09625 1.28458 0.68457 0.89882 1.09625 1.28458 0.69482 1.09583 1.12528 1.09348 0.95833 1.2528 1.09348 0.95348 0.89482 1.32197 1.09477 1.15217 1.08824 0.94477 1.15217 1.08824 0.94477 1.15217 1.08824 0.94477 1.15217 1.08824 0.94477 1.15217 1.09477 1.15217 1.08824 0.94477 1.15217 1.09477 1.15217 1.08824 0.94477 1.15217 1.09477 1.15217 1.09477 1.15217 1.09477 1.15217 1.09477 1.15217 1.09477 1.15217 1.09477 1.15217 1.09477 1.15217 1.09477 1.15217 1.09477 1.15217 1.09477 1.15217 1.09477 1.15217 1.09477 1.15217 1.09477 1.15217 1.09477 1.15217 1.09570 0.97487 1.095777 1.09577 1.095777 1.095777 1.095777 1.095777 1.095777 1.095777 1.095777 1.095777 1.095777 1.095777 1.095777 1.095777 1.095777 1.095777 1.095777 1.095777 1.0957777 1.095777 1.095777 1.095777 1.095777 1.095777 1.0957777 1.0957777 1.095777 1.095777 1.095777 1.0957777 1.0957777 1.0957777 1.095777 1.0957777 1.09577777777 1.095777777777777777777777777777777777777	0.004331 0.0054599 0.0073142 0.0073142 0.0073142 0.0073142 0.0073142 0.0073143 0.0073143 0.0074791 0.0074791 0.0075385 0.0124620 0.005993 0.0050993 0.0050993 0.0050993 0.0050993 0.0050993 0.0057369 0.0027826 0.0052931 0.0062311 0.0064231 0.005299 0.005293 0.0055311 0.0055328 0.0055328 0.005535

	******							STAT	ICN=8 -									
9 8 2	STATION	SEASON	PG	PN	R PLA	NKP\$	PLANKPN	PLAKKR	IHSOL	tenf	SAL	EXTINC	T ND	NTH	DAY	YEAR	PRRATIO	ECOLEFF
1450 1551 1552 1558 1567 1578 1560 1160 1160 1160 1160 1177 1773 1778 1789 1881 1882		CITITITU SUBJECT SUBJE	4234857885477666556566757510310100 67796908607766418805588419910310100 778807780216669255108511955768779018 88951188779018	2113533342254223328844073438843433721011100000 2.08536424475687228444073438843433721011100000	1.1 1.2 2.2 1.2 2.2 1.2 2.2 1.2 2.2 2.3 1.2 1.2 2.2 2.3 1.2 1.2 2.2 2.3 1.2 1.2 1.2 2.2 2.3 1.2 1.2 1.2 1.2 2.2 2.3 1.2 1	1772742187577247277595255547793677874 208482162	1.71 1.22 2.85 1.15 1.23 2.85 1.15 1.23 2.85 1.15 1.23 2.85 1.04 1.15 1.23 2.85 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1	• •	4695 35259 35259 41887 4992 4992 4992 4992 4992 4992 4992 499	2335427478150493923233333333448804006788815	22.0 23.1 19.2 22.7 24.2 23.2 24.2 23.2 24.2 24.2 23.2 24.2 24	1.89 1.89 2.27 2.27 2.27 1.813 2.27 1.813 2.27 1.813 2.27 1.428 2.2013 2.2013 1.428 2.2013 1.428 1.428 1.428 1.428 1.428 1.428 1.489 1.490 1.490		44555556666667778888888999990001111111222	6630725437647338072547639098243767455 67307254376473380725476398243767425	888888888888888888888888888888888888888	1.30056 0.95175 1.14236 1.45882 1.25976 1.06343 0.98762 1.25200 0.97508 1.21818 1.24819 1.06983 0.92286 0.96822 1.20144 1.08933 0.84405 1.04369 1.36891 1.13168 0.94577 0.90989 0.80482 1.13218 1.08974 0.84524 2.10000	0.00402172 0.00250233 0.00387122 0.00387122 0.00387122 0.00387122 0.00373162 0.00673162 0.00573162 0.00573162 0.00573162 0.00572452 0.00541122 0.00541225 0.005621342 0.00621342 0.005555191 0.005555191 0.005555191 0.005555191 0.005555191 0.005555191 0.005555191 0.005555191 0.005555191 0.005555191 0.005555191 0.005555191 0.005555191 0.005555191 0.005555191 0.005555191 0.005555191 0.005555191 0.00528542 0.00667455 0.00541172 0.00647555 0.0054192 0.0062593 0.00682593 0.0082593 0.0082593 0.00082593 0.00087607 0.00087607 0.001847720 0.001847720
	 ПВS S	TATION S	EASON	 PG	P# 8	FLAH	KPG PLANK	stat •k plank	IGN=D - R I <i>k</i> sol	TEMP	SAL	EXTINCT	HOXTH	DAY	YEAR	PRRAT	TO ECON	EFF
	183 184 185 187 189 190 191 193 194 197 199 201 202 203 205 207 208 201 202 208 209 201 202 208 209 201 200 200 200 200 200 200 200 200 200		UAAFFUSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	24524 3245 3247 4426 55557 70305 55557 2977 2977 2977 2977 290 3022 302 30	0.21 2.65 2.49 2.03 2.57 2.92 1.74 2.22 1.46 0.94 1.74 2.02 3.00 2.40 2.92 2.94 3.38 2.18 2.66 2.52 4.50 3.71 3.75 3.31 6.36 3.94 3.78 4.76 3.78 4.76 3.78 4.76 3.78 4.76 3.78 4.76 3.78 4.76 3.70 3.45 3.86 4.42 2.49 3.41 0.96 1.46 5.58 3.74 3.73 3.53 2.30 4.46 9.42 2.29	2.0 0.4 0.1 4.6 4.6 1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.48 1.48 0.28 0.37 0.55 0.55 0.47 1.48 1	4200 5570 7400 4780	13.62 23.2 13.62 13.62 13.23.2 12.1.4 12.2 12.2 12.2 12.2 2.1.4 9.4 2.2 2.7 27.2 27.7 29.8 8.0 8.0 8.0 9.2 20.1 3.0 2.2 2.4 3.6 7.6 2.4 3.6 7.6 20.1 3.0	20.0 30.7 27.2 22.4 23.3 27.4 25.3 27.4 25.3 27.4 25.3 27.4 25.3 27.4 25.3 27.4 25.3 27.4 25.3 27.4 25.3 27.4 25.3 27.4 23.4 23.4 23.4 23.4 23.4 23.4 23.4 23	1.06 1.12 0.88 0.83 0.88 1.13 1.23 1.33 1.33 1.33 1.37 1.49 1.50 1.10 0.97 1.10	111222555555777778888899999946?778	0.00 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.00000 3.00000 3.00000 3.00000 3.00000 3.0000000 3.0000000000	73333773337733777337773777777777777777	0.53* 1.113 0.940 0.841 1.260 0.940 1.125 0.940 1.275 1.027 1.241 1.060 1.320 0.863 0.842 1.013 1.036 0.842 1.245 1.028 0.842 1.245 1.028 0.842 1.245 1.028 0.842 1.245 1.028 0.842 1.245 1.028 0.842 1.028 0.842 1.028 0.842 1.028 0.842 1.028 0.845 0.	162	9143 5530 3297 5649

-

							· · · · · · · ·	STATI	CH=D			~					
DB S	STATION	SEASON	PG	PH	R	plankpg	plaxkpx	PLANKR	INSOL	TEMP	SAL	EXTINCT	контн	DAY	YEAR	PRRAT 10	ECOLEFF
- B 22222222222222222222222222222222222	STATIUX D D D D D D D D D D D D D D D D D D D	SEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	P 684564329222121300113012335365485553428666467446343454532120120 2	FN 2.4.1.2.3.1.1.0.1.0.1.0.0.1.1.0.0.1.0.1.0.0.1.1.1.2.0.3.2.1.4.1.3.3.1.2.2.5.3.3.1.3.4.1.2.3.1.1.1.2.2.1.1.0.1.0.1.0.1.0.1.0.1.0.3.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	R 342223211110020200001100011122222233221312213122101010010 4,001110222223322131221312210101010 55	PL 23222420100 000001112 22232441245324415215488548814811429180645653453453453 000001 0	PLAKPH 1.508225007867267H574933H275H90 467H44248795558899985559888997292279887552574655H552 1.1.1.2.1.2.1.4.558899729257988997292279887559899729227574655H553 	PL611 PL61321 PL6144 PL614 PL6	$ \begin{array}{c} I & 6 \\ 5 \\ 4 \\ 5 \\ 5 \\ 4 \\ 5 \\ 5 \\ 4 \\ 5 \\ 5$	E 22222332828866046226174505753477349492472222222222222222222222222222	S 22239.222222222222222222222222222222222	EXTINCT 1.10 0.80 0.1.90 1.10 0.90 1.10 0.10 0.1.90 1.10 0.1.90 1.10 0.1.90 1.10 0.1.90 0.1.90 1.10 0.1.90 0	MONTH 889999000011111111222223333344445555566666777788888999000111111112222111112	- D 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	F 777777777777777777777777777777777777	FRRATIB 0.91739 1.01241 0.96209 0.986066 1.29792 0.77460 0.73629 0.609766 1.07186 0.7186 0.7186 0.7186 0.7186 0.7186 0.7186 0.62212 1.57590 0.81884 0.62212 1.57590 0.81884 0.62212 1.57590 0.81884 0.62212 1.57590 0.81884 0.62212 1.57590 0.81884 0.62212 1.57590 0.81884 0.62212 1.57590 0.81884 0.62212 1.57590 0.81884 0.62212 1.57590 0.81884 0.62212 1.57590 0.81884 0.62212 1.57590 0.81884 0.62212 1.57590 0.81884 0.62212 1.57590 0.81884 0.62212 1.57590 0.81884 0.62212 0.62418 0.8208 0.84568 0.91667 1.15753 0.79512 1.20000 1.19957 0.78220 1.18035 0.67532 1.20000 1.19957 0.84000 1.17021 1.50676 1.32456 1.18110 0.74993 0.74597 1.22866 0.83585 0.92581 0.67548 1.06527 0.20183 2.26786 1.07513 0.94516	ECDLEFF 0.0041 940 0.0025132 0.00462409 0.0025132 0.0046242 0.0035712 0.0026651 0.0012380 0.0022997 0.0035258 0.0012380 0.0022997 0.0035258 0.0012380 0.0018825 0.0021299 0.0031616 0.0013456 0.0037488 0.0037486 0.0037486 0.0037450 0.0037450 0.0037450 0.0037496 0.0037496 0.0054201 0.0057820 0.0037496 0.0057820 0.0037496 0.0057820 0.0037496 0.0057820 0.0037496 0.0057820 0.0037496 0.0057820 0.0037496 0.0057820 0.0037590 0.0037496 0.0057820 0.0037591 0.0057820 0.0037496 0.00544325 0.0045953 0.0045953 0.0045953 0.0045953 0.0045953 0.0045953 0.0045953 0.0045953 0.0045953 0.0047652 0.0045953 0.0047652 0.0047652 0.0047652 0.0047653 0.0047655 0.0047653 0.0047655
279 280 281 282 283 284 285 285 285 285 285 285 285 285 285 285	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.45 11.13 1.739 1.2.87 1.2.87 1.2.87 1.2.89 1.5 5.45 7.35 5.45 7.34	0.86 0.62 0.43 1.31 1.63 1.45 1.89 2.34 2.31 3.31 2.04 1.80	0.63 0.83 0.68 0.42 1.26 1.26 1.79 1.35 2.99 2.14 1.03 1.54	1.33 1.40 1.16 1.68 0.97 1.16 2.11 2.55 3.52 6.58 6.71	0.15 1.07 0.53 1.53 0.46 0.70 1.63 1.17 2.16 5.60	0.38 0.33 0.60 0.15 0.51 0.46 0.48 1.38 1.36 0.00	2022 2980 3246 4417 4533 4193 3639 3536 3410 3410 5260 5470	15.3 16.1 17.4 20.3 21.5 24.4 26.9 27.3 25.6 24.4	24.6 24.8 25.8 27.0 23.0 21.7 24.8 24.0 24.2 22.2 26.8 26.2	1.48 0.95 1.36 1.35 1.24 1.62 1.89 1.89 1.55 3.09 2.83	<u>השטהעיר א</u> רשט	707093093703700000000000000000000000000	79 79 79 79 79 79 79 79 79 79 79 79 79 7	1.18254 0.87349 0.81618 2.05952 1.14683 1.07540 1.02793 1.36667 0.88629 1.27336 1.49029 1.08442	0.0029478 0.0019463 0.0013678 0.0015667 0.0025502 0.0025853 0.0040451 0.0041742 0.0062170 0.0063930 0.002346 0.0024424

								- STATI	Q=X2		- •					
DB\$	STATION	SEASON	PG	PX	R	PLAKKPG	PLANKPN	PLAHER	INSOL	temp sal	EXTINCT	MONTH	DAY	YEAR	PRRATID	ECOLEFF
ᅽݿݮݸݮݸݮݸݷݸݥݬݸݠݷݸݸݥݛݸݷݸݞݥݷݷݷݷݷݷݷݷݷݷݷݷݷݷݷݷݷݷݷݷݷݷݷݷݷݷݷݷݷݷ	00000000000000000000000000000000000000	SSSSSSSFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	455578775677222455633355313200011122013212131223355235425444535432472476353295424762829312882552968300832293 5999638281391371888218925394345555940321841821025037757143340717422531362812628829932188955210885098832293	223333343223440023232342333221796895549589912037229633882896584766753554968899932832892892892892892892 07497555995539551769872542221796895549549899122037229633882896584766755354968899932892892892892892892892892892	22223433231432122222211220011100011000001110111121122122	245585477554237227111110200000000101 1211711247517754522222444378528323788811400 55244518006077881840040107521421082 40087118830217914222753482073514042823328881147 5143483629228954120904039706854839004 5050428024731218067110064117485283328881447	23447456211773522000999999000000000000000000000000000	00011110100000000010000100000000000000	345444933344534444444444444444444444444	$\begin{array}{l} 309 \\ 929 \\ 329 \\ 110 \\ 929 \\ 329 \\ 110 \\ 929 \\ 329 \\ 120 \\$	38089674645099902184741199416351173096667597186585149802473106441608773957593 1212121112111111111111111111111111111	\$\$\$\$77778888999000111111122211112222233994444555555\$\$\$\$\$\$\$88889999999949000111111122	2388237812862311186 1559 451156 782267118611559 569 55115599444994459 459955	77777777777777777777777777788888888888	$\begin{array}{c} 0.8390\\ 1.0830\\ 1.2140\\ 0.9634\\ 1.1380\\ 1.2140\\ 0.9637\\ 1.0697\\ 1.0798\\ 0.912700\\ 0.92700\\ 0.92700\\ 0.92700\\ 0.92700\\ 0.92700\\ 0.92343\\ 1.1780\\ 0.2243\\ 1.1780\\ 0.9311\\ 1.0780\\ 1.0780\\ 1.0780\\ 1.0785\\ 1.0039\\ 1.1763\\ 1.0785\\ 1.0039\\ 1.1763\\ 0.9311\\ 1.07579\\ 0.8185\\ 1.07879\\ 1.0759\\ 1.0797\\ 0.8185\\ 1.0797\\ 1.05579\\ 1.0797\\ 1.07979\\ 0.8185\\ 1.0797\\ 1.07979\\ 0.8184\\ 1.0797\\ 1.07979\\ 1.07979\\ 0.8184\\ 1.0039\\ 1.1763\\ 0.8878\\ 1.1020\\ 0.27241\\ 1.0200\\ 0.2745\\ 1.0887\\ 0.8878\\ 1.10200\\ 0.2745\\ 1.0887\\ 0.8878\\ 1.10200\\ 0.2745\\ 1.0887\\ 0.8878\\ 1.10200\\ 0.27241\\ 1.0200\\ 0.27241\\ 1.0200\\ 0.2745\\ 1.0887\\ 0.8878\\ 1.10200\\ 0.27241\\ 1.0200\\ 0.2745\\ 1.0887\\ 0.8878\\ 1.10200\\ 0.2745\\ 1.0888\\ 0.8788\\ 1.10200\\ 0.8878\\ 1.10200\\ 0.2745\\ 1.0888\\ 0.8878\\ 1.10200\\ 0.2745\\ 1.0888\\ 0.8878\\ 1.0020\\ 0.8888\\ 0.878\\ 0.887$	0.0058133 0.0040977 0.0042919 0.0050927 0.0067071 0.0067071 0.0067071 0.0067071 0.0067071 0.0067071 0.006707729 0.0042916 0.0045976 0.0045976 0.0045976 0.0045976 0.0045976 0.0045975 0.0045517 0.00896149 0.00454976 0.0045517 0.00896149 0.00454976 0.0045517 0.00896149 0.00454976 0.0027570 0.0027570 0.00124870 0.00124870 0.00124870 0.00124870 0.00124870 0.00124870 0.00259900 0.00124210 0.0021399 0.0021399 0.0021399 0.00225970 0.00225970 0.00225970 0.00225970 0.0021399 0.00225990 0.0021399 0.00225990 0.0021399 0.00225990 0.0021399 0.00225990 0.0021399 0.00225990 0.0021399 0.00225990 0.0021399 0.0025990 0.0021399 0.0025990 0.0021399 0.0025990 0.0021399 0.0025990 0.0021399 0.0025990 0.0021399 0.0025990 0.0021399 0.0025990 0.0021399 0.0025990 0.0021399 0.0025990 0.0021399 0.0025990 0.0021399 0.0025990 0.0021399 0.0025990 0.0021399 0.0025990 0.0021390 0.0025990 0.0021390 0.002590 0.002590 0.002500 0.002500 0.002500 0.002500 0.002500

APPENDIX C

SUMMARY OF DATA FROM THE DISCHARGE BAY (OB) AND ITS CONTROL BAY (C)

EXPLANATORY KEY OF TABLE CAPTIONS IN APPENDIX C

OBS-Observation #.

STATION-See Figure II-1b.

SEASON-See descriptions in chapter 5.

PG—System gross productivity (g 0₂·m⁻²·d⁻¹).

PN—System daytime net productivity (g $0_2 \cdot m^{-2} \cdot d^{-1}$).

R—System night respiration (g $0_2 \cdot m^{-2} \cdot d^{-1}$).

PLANKPG—Plankton gross productivity (g $0_2 \cdot m^{-2} \cdot d^{-1}$).

PLANKPN—Plankton 24-hour net productivity (g $O_2 \cdot m^{-2} \cdot d^{-1}$).

PLANKR—Plankton 24-hour respiration (g $0_2 \cdot m^{-2} \cdot d^{-1}$).

INSOL—Insolation (kcal·m^{-2·d⁻¹).}

TEMP___Temperature (°C).

SAL—Salinity (%.).

EXTINCT—Extinction coefficient (m^{-1}) .

MONTH-(Self-explanatory).

DAY_Day (calculated as percentage of 30 or 31 days in the month).

YEAR-(Self-explanatory).

PRRATIO__(calculated as PG/2R).

ECOLEFF—Ecological efficiency (calculated as [4 x PG]/INSOL).

								411114									
085	STATION	SEASOK	fc	PX	R	PLAXKPG	planken	PLAXKR	INSOL	TEMP	SAL	EXTINCT	MONTH	Day	YEAR	PRRATID	ECOLEFF
121456785101112114151471811221222222222222222222222222222222	STATION CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CRASSING CALL AND CAL	1179805811452644412341224422113222217455145 7545484447644514224111222 第 117980581145264445145752644557576557655725767755745576576576576576576576576576576576576576	PH 0.8144024513121121120011110111100050220022 421254212422231111121010101111 0.880099378403784037805180578857788578805880597950220022 4212542124222311111121010101111 0.8800993784037840378051885787885978805880597950220022 4212542124222311111121010101111 0.880099378403784043788578859788589578950220022 4212542124222311111121010101111 0.880099378403784043784578859788589578950220022 42125421242223311111121010101111 0.880093784043784578857886578958849950222 42125421242223311111121010101111 0.880093784043784578858849957884588499597852 4277557588437997990422000044414682200105666822 0.8800937840437845858844993784588449957493788444444444444444444444444444444444	R 5445907229986671566170886590992754647277966192415 29476279152705668885545556609628473	PL 9.783629435555322221011001213 2333245923 653467319785127791446209810911	PLAKEPN 830 64443545686577771369736697155 44235687471697866991775 12352124822 4423566122541595 12515194779880227 -0.889 -0.899 -0.997 -0.899 -0.997 -0.899 -0.997 -0.899 -0.997 -0.899 -0.997 -0.899 -0.997 -0.899 -0.997 -0.899 -0.997 -0.899 -0.997 -0.899 -0.997 -0.897 -0.997 -0.997 -0.897 -0.997 -0.897 -0.997	PLAY 58922121111111000000000000000000000000000	IN SOL	TEN 34427 30.34279 30.444080 31.8279 22.2229 22.22211 11.1450 12.222 22.2211 11.1450 12.222 22.2211 11.1450 12.222 22.2211 11.1450 12.222 22.2211 11.1450 12.222 22.2211 11.1450 12.222 12.2211 12.22211	SAL 12 28 28 29 9 9 4 4 4 4 0 8 8 8 4 8 8 7 8 8 8 0 9 9 7 8 0 5 9 6 9 9 6 9 0 9 9 10 5 9 9 9 0 9 0 10 9 0 10 5 7 10 9 0 10 10 9 0 10 10 9 0 10 10 10 10 10 10 10 10 10 10 10 10 1	EXTINCT 2.79366661100.100000000000000000000000000000	NU 877788889999000011111111112222223333394444555556666677778888899900001111111112222133334444555556666677778888899900001111111111222211111111111111	0 ¹	YEAR 777777777777777777777777777777777777	PRRATID 1.0172 0.9692 1.0455 1.1438 1.6500 0.8076 0.8076 0.7397 1.4074 1.4382 0.8566 0.7397 1.4074 1.4382 0.8566 0.7397 1.4074 1.4382 0.8566 0.7397 1.4074 1.4382 0.8566 0.6962 1.1720 0.8056 0.6962 1.1720 0.8396 1.0189 0.6387 0.8355 1.0160 0.6387 0.8659 1.0189 0.6387 0.8659 1.0556 0.6035 1.0552 0.6035 1.0552 0.6035 1.0765 1.0765 1.0765 1.0765 1.0765 1.0765 1.0765 1.0765 1.0765 1.0765 1.0765 1.0765 1.0765 1.0556 0.8696 1.0785 0.6035 1.0765 1.0765 1.0765 1.0556 0.8696 1.0785 0.6040 0.4293 0.4659 0.4659 0.4659 0.4659 0.4659 0.4659 0.4669 1.0777 0.8547 0.86947 0.4555 0.6035 1.0765 1.07	ECBLEFF 0.007495 0.004973 0.005996 0.000828 0.003536 0.008682 0.009071 0.002627 0.002473 0.002482 0.002482 0.002473 0.002482 0.002473 0.002482 0.002473 0.002473 0.002473 0.00258 0.002658 0.002658 0.002658 0.002658 0.002658 0.002658 0.002658 0.002658 0.002658 0.002658 0.002658 0.002658 0.002658 0.002658 0.002658 0.002658 0.0027318 0.005214 0.005214 0.005214 0.005214 0.005214 0.00558 0.007493 0.007493 0.007493 0.006545 0.006545 0.006555 0.006527 0.006527 0.006527 0.006527 0.006555 0.006527 0.006527 0.006527 0.006527 0.006555 0.006527 0.006527 0.006527 0.006527 0.006527 0.006527 0.006527 0.006527 0.006527 0.006527 0.006527 0.005305 0.005305 0.005305 0.005305 0.005504 0.005673 0.005504
68 69 70 71 72 73	C C C C C C C	SP SP SP SP SP SP	3.12 2.66 2.31 1.99 3.39	1.72 1.21 1.17 1.17 1.99 1.45	1.40 1.45 1.14 0.82 1.40 1.86	1.07 2.09 3.33 1.72 2.51 1.60	1.07 1.30 2.62 0.96 2.31 0.73	0.00 0.79 0.71 0.76 0.20 0.87	1750 2022 2980 3246 4417 4533	14.30 15.30 15.90 17.20 17.30 20.10	24.50 25.20 25.40 26.90 27.20 23.80	1.31 0.92 1.48 1.42 1.42 1.35	2 10 10 10 10 10	53 7 10 57 60 99	74 74 74 74 74	1.1143 0.9172 1.0132 1.2134 1.2107 0.8898	0.00/131 0.005262 0.003101 0.002452 0.003070 0.002921

•

								STATI	CH=C								
OBS	STATION	SEASON	fg	PX	R	PLANKPG	PLANKPN	PLANKR	INSOL	TEMP	SAL	EXTINCT	НСК ТН	DAY	YEAR	PRRATID	ECOLEFF
$\frac{5}{11}$		SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	825561190323272455787227557333557333532113400010512220213112234774546525445454554525445687825641226554 85156741276554122655232722755016670414009111162153338750966031513648666444043310969226059 8255611490323232724522750166704140911118215333875096602031513648666444043310960226059	121231112322333463013649771872098122422593573973910634639311110910210112112320920322222333112322233559373910612004690311111010210112112320932222222333112322092222233559377991063220465985578578578578893468913468913417102268877629222223335937722092222223333112322092222223333112322233559377991063220922222233559377991063220922222233559377992063222222233559377992063222222233559377992063222222223355937799206322222223355937799206322222222233559377992063222222223355937799206322222222233559377992063222222222335593779920632222222233559377992063222222222223355937799206322222222335593779920632222222222335593779920632222222222222222222222222222222222	2111102222211332343921432112222002100121 200002000101110012111022122221212132443435990644428487 30550582326334445346668932866997 305505823265445546668932866039064442835877 30550582326534455466689328660390644428358777 3055058232653445555666693222222212132111322	4+2 & #584878814&77990159774901557745044258705098 71884554545275018485845945545475422 3348 8147898814&78814&7857543722432100440004400008 3442 & 777884554925422588559435945549102423	271 574876577777665564644775224221007790694100 12718112755767872228888988898889217459 271 5748765777776556464477522422100779064941200 1271711127557678722084889898889217459	$\begin{array}{c} 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\$	333355345444333683344433443344332222232 24 2122337245244336845550956233126564233122222232 24 212233724552443368455509562331265546922222232 24 2122337232455509557234601552525252525435500155272440575297527384 25544336600000000000000000000000000000000	5166683608183349939392932222221111111182221111111111111	1090410340029222222222222222222222222222222222	$\begin{array}{c} 790 \\ 7270 \\ 2.2870 \\ 2.2883 \\ 0.270 \\ 2.2883 \\ 0.270 \\ 0.2883 \\ 0.270 \\ 0.2883 \\ 0.270 \\ 0.2883 \\ 0.270 \\ 0.2883 \\ 0.270 \\ 0.2883 \\ 0.270 \\ 0.2883 \\ 0.270 \\ 0.2883 \\ 0.270 \\ 0.2883 \\ 0.270 \\ 0.2883 \\ 0.270 \\ 0.2883 \\ 0.270 \\ 0.2883 \\ 0.270 \\ 0.2883 \\ 0.270 \\ 0.2883 \\ 0.290 \\ 0.2883 \\ 0.290 \\ 0.2883 \\ 0.290 \\ 0.2883 \\ 0.290 \\ 0.2883 \\ 0.290 \\ 0.2883 \\ 0.290 \\ 0.2883 \\ 0.290 \\ 0.2883 \\ 0.290 \\ 0.2883 \\ 0.290 \\ 0.2883 \\ 0.290 \\ 0.2883 \\ 0.290 \\ 0.2883 \\ 0.290 \\ 0.2883 \\ 0.290 \\ 0.2883 \\ 0.290 \\ 0.283 \\ 0.290 \\ 0.2883 \\ 0.290 \\ 0.2883 \\ 0.290 \\ 0.2883 \\ 0.290 \\ 0.$	445555666677778888999000111111112220111112222277775555666667778888888889999900	77128822378128823781288231188 1599 45 1158 782287118811759 589 55115599449945 0370037038823781288231188 1570379382933881479289813703032593709358032547030382	77777777777777777777777777777777777777	$\begin{array}{c} 0.82949\\ 0.82949\\ 1.27684\\ 0.82461\\ 1.28729\\ 2.17222\\ 0.75840\\ 0.86942\\ 1.00427\\ 1.13052\\ 1.44872\\ 0.893942\\ 1.00521\\ 1.49872\\ 0.893906\\ 1.01336\\ 1.02461\\ 1.01534\\ 1.02461\\ 1.01534\\ 0.4649\\ 1.02461\\ 1.05770\\ 1.06265\\ 1.04868\\ 0.4649\\ 1.05771\\ 0.4649\\ 1.05771\\ 1.05770\\ 1.05771\\ 1.05770\\ 1.05760\\ 1.05380\\ 1.07835\\ 1.77865\\ 1.77800\\ 0.90351\\ 1.04886\\ 0.78641\\ 1.18280\\ 0.78640\\ 1.05388\\ 1.07835\\ 1.78866\\ 0.78641\\ 1.18280\\ 0.78640\\ 1.05388\\ 1.07835\\ 1.05526\\ 1.05526\\ 1.05526\\ 1.06875\\ 1.05526\\ 1.06875\\ 0.92365\\ 1.06875\\ 0.9236\\$	0.0041770 0.0051131 0.0054863 0.0054863 0.0027734 0.0059378 0.0059549 0.0059544 0.0059544 0.0059544 0.0059544 0.0059547 0.0059544 0.0059547 0.0059547 0.0059547 0.0059547 0.0059878 0.0070580 0.0026390 0.0026390 0.00259878 0.0059878 0.0059878 0.0059878 0.0059878 0.0059878 0.0059878 0.0059878 0.0059878 0.0059878 0.0059878 0.0059878 0.0059878 0.0059878 0.0059875 0.0059875 0.0044739 0.0059875 0.0049758 0.0059875 0.0049755 0.0049758 0.0059878 0.0059878 0.0059878 0.0059875 0.0059875 0.0049758 0.0059878 0.0059875 0.0049755

								DATA	RECORD				1	5:55	FRIDA	Y, FE	ERUARY	6, 1981	3
								STA1	ICX=C										
DBS	STATION	SEASON	PG	FH	R	PLAXKPG	PLANKPN	PLAXK R	INSOL	TEMP	SAL	EXTINC	r Mont	H CA	Y YE	AR P	RRATID	ECOLEFF	
149 150 151 152 153 154	000000	UI UI UI UI UI	2.07 1.79 2.05 3.82 2.03 1.13	1.45 1.01 1.97 3.46 0.99 0.51	0.62 0.78 0.98 0.36 1.04 0.62	2.43 2.37 2.09 1.52 0.75 0.96	1.46 1.42 0.90 1.11 0.60 0.60	0.97 0.95 1.19 0.41 0.15 0.36	1792 2663 3607 1537 2249	19.0 19.7 16.2 15.8 16.4 15.8	26.2 26.0 25.2 24.4 25.5 25.3	1.36 1.36 1.17 1.48 1.06 1.03	11 11 11 11 12 12	47 50 47 51 52 53	8 8 8 8 8 8 8 8 8 8 8 8	10 10 10 10	1.6694 1.1474 2.8125 5.3056 0.9760 0.9113	0.004620 0.002688 0.002273 0.005283 0.005283)54 370 336 34 34 378
								STAT	10%=0										
	082 S	TATION S	SEASON	PG	P N R	PLAK	FG PLANKP	n plakkr	INSOL	TEMP	SAL	EXTINCT	HOXTH	day y	ear P	RRATI	O ECO	EFF	
	15567890012345667890012345667890012345667890012345667890012220020020202020220220220220220220220		SSSFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	24505447597597536142911110210526758556154 7521542224551754927113115 988058927626402498848874258474958281429412819 815212297155884917584524578892	2.88772134024342314243444444444444444444444444	1 1		9.0324710105335271252000 9.0324710105335271252000 9.000000000000000000000000000000000	0078000 20780000 207800000 207800000 207800000 20780000000 207800000 207800000000 20780000000000	3335,527788473449988999990990990999999999999999999999	277.801074747088877898687999008999999999999999999999	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	٥٦٦٦888499	£393777267375637563759967373763737663139782777236767878227773129970733023773494955571	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{c} 1.6426\\ 0.647\\ 0.647\\ 10.631\\ 1.6426\\ 1.647\\$	9 0.000 8 0.000 8 0.000 8 0.000 1 0.0	+6190 190 191255 191355 191355 191355 191355 191355 191355 191355 191355 191355 191355 191355 191355 191355 <td></td>	
DATA RECORD

08S	STATION	SEASON	PÇ	кч	R	PLANKPG	PLANKPX	PLANKR	INSOL	TENP	SAL	EXTINCT	MONTH	DAY	YEAR	PRRATIO	ECOLEFF
217 218 219	0 D	UI UI	2.50 1.36	2.50 0.50	0.00 0.86	0.89 1.42	-0.48 1.29	1.37 0.13	1775 2080 3224	14.4 15.2 17.5	27.3 24.2 25.8	0.73 1.10	1 1	20 77 80	79 79 79	0.79070	0.0056338 0.0026154
22222222222222222222222222222222222222		UIPPPPPPPPUUUUUUUUUUUUAAAAAAA	1 124323344534482 4354424682730662714955668712344554 86073066271495977339442453	0 1271222222111221212570 12712222222111221212570 12712222222111221212570 127122222222111221212570 127122222222111221221570 1271222222222111221221570 12712222222221112212570 12712222222222111221221221570 12712222222222111221221221570 127122222222222111221221221570 127122222222222111221221221570 1271222222222221112212212212212212221570 12712222222222221112212212212221570 127122222222222221112212221570 127122222222222221112212221570 12712222222222222222111222221570 12712222222222222222222222222222222222	0 0011011111211212121212292911222557	1.1.1.1.7.1.1.0.1.4.7 4.4.2.7.7.8.8.7.0.5.4.2.8.4.2.7.7.8.8.7.0.4.2.8.4.2.8.4.2.7.7.8.8.7.0.5.4.2.8.4.2.8.4.2.7.7.8.8.7.0.5.4.2.8.4.2.8.4.2.7.7.8.8.7.0.5.4.2.8.4.2.7.8.4.8.7.0.5.4.2.8.4.2.7.8.4.8.7.0.5.4.2.8.4.2.7.8.4.8.7.0.5.4.2.8.4.2.7.8.4.8.7.0.5.4.2.8.4.2.7.8.4.8.7.0.5.4.2.8.4.2.8.4.2.7.8.4.8.7.0.5.4.2.8.4.2.7.8.4.8.7.0.5.4.2.8.4.2.7.8.4.8.7.0.5.4.2.8.4.2.7.8.4.8.7.0.5.4.2.8.4.2.7.8.4.8.7.0.5.4.2.8.4.2.7.8.4.8.7.0.5.4.2.8.4.2.7.8.4.8.7.0.5.4.2.8.4.2.8.4.2.7.8.4.8.7.0.5.4.2.8.4.2.8.4.2.4.2.8.4.2.7.8.4.8.4.2.7.8.4.8.7.0.5.4.2.8.4.2.4.2.8.4.2.7.8.4.8.7.0.5.4.2.8.4.2.4.2.8.4.2.7.8.4.8.7.0.5.4.2.8.4.2.4.2.8.4.2.4.2.4.2.4.2.4.2.4.2	1.2315221336559116 -9.835 -9.835 -9.835 -9.83746672248855541718 -9.84746672248855541718	0.1300 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.000000	29804 17522 2984 17522 2984 453733 3554 100 3554 100 3554 100 4534 3936 3936 3936 3936 3936 3936 3936 39	$\begin{array}{c} 1177.9\\ 259.2\\ 189.4\\ 259.7\\ 285.5\\ 251.0\\ 193.5\\ 295.1\\ 205.5\\ 205.1\\ 205.5\\ 2$	245.449.183.241.1769766413291115725167	1.70 1.72 1.72 1.12 1.22 2.22 2.44 1.12 1.25 1.25 1.22 2.22 1.87 1.25 1.25 2.44 1.11 1.25 2.44 1.12 1.25 2.44 1.12 1.25 2.44 1.12 1.25 2.44 1.25 1.25 1.20 1.22 1.22 1.22 1.22 1.22 1.22 1.22	112 mmmmuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu	/85 1569 771266238823781266231 /03707093037003703670719315706	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6.50000 3.86364 1.58699 1.48611 7.00000 1.67961 1.50000 1.16667 1.28797 1.16939 1.32231 1.07944 1.04867 1.07944 1.07945 1.07944 1.09650 1.07045 1.33660 1.07045 1.38660 1.07045 0.31061 0.30651 0.31061 0.3069 0.339499 0.38799 0.38799	0.0026134 0.0032686 0.0050445 0.0050445 0.0020285 0.0030532 0.0030532 0.0030532 0.0030532 0.0030583 0.0046041 0.0037537 0.0036784 0.0037537 0.0036784 0.0037537 0.0036784 0.003784 0.0036784 0.0036784 0.0036784 0.0048454 0.0048454 0.00567833 0.0055083 0.0055083 0.0050833 0.0050833 0.0050833 0.0051810
247 248 249 250	0 0 0	FA FA FA FA	3.98 6.10 1.18 1.53	0.62 2.20 0.10 1.39	3.36 3.90 1.08 0.14	2.60 4.17 2.92 4.24	1.58 3.65 2.62 3.23	1.02 0.52 0.30 1.01	4263 3781 3008 2812	27.9 27.1 30.7 29.7	14.7 20.8 28.2 28.3	2.71 2.02 1.70 1.55	10 10 10 10	10 19 61 65	74 74 74 74 74	0.54226 0.78205 0.54630 5.46429	0.0037345 0.0064533 0.0015691 0.0021764
251 252 253 254 255 255 256 256	U 0 0 0 0 0 0	FA UI UI UI UI	1.24 0.83 1.34 3.09 2.58 1.99 0.73	0.13 0.06 1.34 3.09 2.58 1.99 0.73	1.16 0.77 0.00 0.00 0.00 0.00	1.53 1.82 1.11 2.09 0.65 0.74 0.50	0.47 1.72 0.64 1.43 0.29 0.48 0.47	0.38 0.10 0.47 0.66 0.36 0.26 0.03	2478 2478 2651 3077 2328 980	28.8 23.1 21.6 18.3 18.4 25.5	29.3 29.9 28.2 27.0 28.0 27.3 28.7	1.42 1.55 1.00 0.94 1.36 1.55 1.13	11 11 11 11 11 12 12	10 53 57 9 38 48	79 79 79 79 79 79 79	0.53896 0.53896	0.00211568 0.0021630 0.0046624 0.0031539 0.0034192 0.0034192
258 259 260 261 262 263	0 0 0 0 0	UI UI UI VI	-0.25 0.30 2.70 2.25 2.75	-0.25 0.30 1.84 2.25 2.75	0.00 0.00 0.86 0.00 0.00	1.18 0.31 0.40 0.59 0.74 0.81	1.18 0.21 0.36 0.52 0.36 0.42	0.00 0.10 0.04 0.07 0.43 0.39	271 645 2351 1810 2616 7952	24.0 18.3 15.7 21.1 21.8 18.7	29.2 26.8 26.4 28.2 28.5 27.1	1.06 1.42 1.50 1.10 1.03 2.60	12 1 1 1 2	52 13 16 58 61	79 80 80 80 80 80	1.56977	-0.0043240 0.0018605 0.0045938 0.0049724 0.0049724 0.0049724
265		3P 3P 3P 3P	3.30 5.26 3.91 4.14	3.30 4.22 3.17 4.14	0.00	0.20 1.67 0.91 1.50	0.10 1.63 0.35 1.08	0.10 0.04 0.56 0.42 1.16	3773 3773 2139 3518 2525	15.9 20.4 21.3 18.0	25.6 27.1 26.9 24.5	1.36 1.26 1.06 1.42	22237	7 79 82 26 29	60 80 80 80 80	2.52885 2.64189	0.0042308 0.0055765 0.0073118 0.0043373
269 270 271 272 273		3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1.55 4.54 2.81 3.42 3.30	0.83 3.95 1.51 2.67 2.78	0.72 0.54 1.30 0.35 0.52	2.24 2.36 1.75 1.33 2.44	1.85 2.01 1.36 0.35 2.28	0.35 0.39 0.98 0.16	4145 5080 2184 5125 4305	22.1 19.8 24.0 23.2 22.3 23.2	25.5 21.8 24.3 23.0 21.8 21.8	2.13 1.55 2.10 2.19 1.89	1mm <i>444</i> 4	68 71 13 17 60	80 80 80 80 80 80 80 80	1,07639 3,84746 1,08077 4,31429 3,17308 1,37255	0.0014958 0.0035748 0.0051465 0.0023571 0.0028664 0.0071549
275 276 277 278 278 279	0 0 0 0 0	SU SU SU SU SU	2.34 2.93 7.52 4.47 3.95	2.03 2.40 5.29 2.34 1.47	0.31 0.53 2.23 2.13 2.48	2.00 2.87 4.60 6.15 7.38 6.19	2.22 4.29 5.63 6.63 5.42	0.67 0.31 0.52 0.75 0.77	5259 5125 4189 3387 4546	24.9 25.6 29.5 29.1 28.8	19.0 19.4 21.1 21.7 22.1	2.27 2.13 2.43 2.13 3.09	r55555	10 13 52 55 99	80 80 80 80 80	3.77419 2.76415 1.68610 1.04930 0.79637	0.0017748 0.0022868 0.0071807 0.0052790 0.0052790
280 281 282 283 283 284	0 0 0	20 20 20 20 20 20	4.84 1.33 4.28 3.70 14.05	3.06 0.09 3.61 1.24 11.32	1.78 1.24 0.67 2.46 2.73	7.94 4.84 7.13 4.62 13.01	7.34 4.17 7.13 3.64 12.29	0.65 0.67 0.00 0.98 0.72	4902 5140 4768 2303 5467	28.2 30.2 30.4 30.2 30.4	22.5 24.3 23.6 18.2 16.8	3.40 1.36 1.70 2.83 2.44	666671	37 57 60 99 3	80 80 80 80	1.35955 0.53629 3.19403 0.75203 2.57326	0.0039494 0.0010350 0.0035906 0.0064264 0.0102799
285 286 287 288 289 289 290	0 0 0 0 0	SU Su Fa Fa Fa	7.63 7.42 11.55 1.78 7.91 6.52	3.83 4.57 5.74 0.57 6.33 4.30	3.80 2.85 5.81 1.21 1.58 2.22	7.27 6.59 7.31 7.07 5.39 8.00	6.60 5.88 6.18 6.06 4.83 7.94	0.67 0.71 1.13 1.01 0.56 0.06	5096 4019 3758 4724 4442 4709	31.9 32.1 32.8 32.7 32.4 33.5	21.1 22.0 19.2 18.8 22.5 22.8	1.79 2.13 2.43 1.89 1.21 1.55	7 8 8 8 8	55 58 10 13 52 55	80 80 80 80 80 80	1.00345 1.30175 0.99398 0.73554 2.50316 1.46847	0.0060467 0.0073849 0.0122938 0.0015072 0.0071229 0.0055383

II-272

•

æ\$	STATION	SEASCH	PC	PX	D		PLACER	PLANKR	INSOL	TEMP	SAL	EXTENSE	HORTH	DAY	YEAR	PERATIO	ECOLEFF
291 292 293 295 295 296 296 297 298 299		FA FA FA FA FA UT	8.97 7.39 8.34 10.13 10.59 10.74 6.38 1.83 1.83	5.03 3.81 4.07 5.83 8.15 6.51 3.12 4.13 1.79 1.41	3.94 3.58 4.27 4.30 2.44 4.23 3.47 2.25 0.07 0.00	7.45 7.31 5.68 5.68 5.56 4.60 4.91 4.91 2.89	6.89 6.16 5.63 4.78 4.43 7.28 4.41 3.09 2.09 2.08	0.65 1.15 0.65 0.90 1.28 0.90 1.28 0.59 0.23 0.81	4575 4397 3692 3207 3663 3678 3354 2228 4165	32.563004079 32333444079 3444079 28.799	25.3 26.1 28.8 27.5 29.5 29.6 25.6 27.6 25.5 25.5	2.62 2.83 1.62 1.59 1.40 1.42 1.36 1.55 1.31	8 8 9 9 9 9 9 10 10 11	947 43 43 93 82 97 7	80 80 80 80 80 80 80 80 80 80	1.1383 1.0321 0.9766 1.1779 2.1701 1.2695 0.9496 1.4178 13.2857	0.0078426 0.0067228 0.0081865 0.019751 0.0132086 0.0117281 0.0071669 0.0076088 0.0033343 0.0033543
301 302 303 304 305 306		UI UI UI UI UI UI	7.98 3.15 2.06 1.96 2.30 1.56	3.13 2.00 1.30 1.36 1.73 1.56	4.85 1.15 0.76 0.60 0.57 0.00	2.01 3.48 2.11 1.88 1.48 2.72 2.05	2.23 1.05 1.50 0.60 1.¢9	1.25 1.06 0.38 0.88 1.63 0.96	1792 2663 3607 1537 2249	22.1 22.7 19.0 19.4 22.8 22.7	26.1 26.5 22.6 23.6 25.9 26.0	1.17 1.26 1.42 1.06 1.00 1.36	11 11 11 11 12 12	470 979 92 55	80 80 80 80 80	0.8227 1.3696 1.3553 1.6333 2.0175	0.0178125 0.0047315 0.0022844 0.0059857 0.0027746

.

APPENDIX D

SUMMARY OF DATA FROM THE DISCHARGE AND CONTROL MARSHES

.

MARSH COMMUNITY NETABOLISH DATA

.

SEASER		WINTER	1480	SEASEN		RATHIN	1980
CULLEU AREA - DUMINAN CHANGEE	TREATHER	T INTAKE	- CONTROL	CULLECT AREA - DUMINAN	TREATHE	E 1- 1-8 NT INTAKE ES JUNCUS	- Control A
SUNROSE	AT 7.1	45 SUNSET	AT 17.72	SUNROSE	AT 7.	45 SUNSET	AT 17.72.
TIME	AIR TEMP Deg C	CDRRD Ps/resp Gc/H2/H	SOLAR KCAL /H2/H	TIME	AIR TEHP Deg C	CORRD Ps/resp Gc/n2/h	stelar Kcal /112/h
6.93	4.4	-0.077	٥.	4.16	4.1	-0.087	\$.
1.99	4.0	-0.103	٥.	1.18	4.3	-0.075	٥.
2.90	3.4	-0.071	٥.	2.13	4.1	-0.030	٥.
3.85	2.2	~\$.\$89	٥.	3.14	\$.¢	-0.125	٥.
4.85	¢.9	-0.110	٥.	4.11	2.0	-\$,\$88	٥.
5.84	1.8	-0.061	¢,	5.09	-1.0	-\$.122	¢.
8.79	1.0	-\$.227	\$.	6.98	2.\$	-0.093	٥.
7.8\$	1.1	-0.070	23.	7.03	~1.0	-0.206	٥.
8.78	4.2	0 .255	88.	8.48	1.9	-\$.\$98	41.
4.77	13.0	0.749	158.	P. 03	6.0	0.647	106.
10,02	18.2	Ŷ.215	317.	10.02	13.1	1.015	176.
11.02	22.6	4 .759	328.	11.26	16.0	¢.589	293.
12.02	22.0	\$.837	311.	12.27	19.7	¢.418	323.
13,01	23.0	¢.489	270.	13.27	22.8	¢.711	328.
14.01	21.0	03E.0	194.	14,27	21.9	\$. 6 9\$	299.
20.91	8.3	-0.144	¢ .	15.26	23.0	0.436	258.
21.92	8.0	-0.165	٥.	16.26	20.0	¢.175	176.
23, 91	4.1	-0.086	\$.	21.17	8.1	-0.187	٥.
99.99	4.1	-0.086	٥.	22.15	8.4	-\$.155	Ŷ.
				99.99	\$.\$	-0.155	٥.

MARSH COMMUNITY METABOLISH DATA

	SEASON	THE DATE	WINTER 198	30	SEASOR	THU DATE	WINTER 198	i0
	AREA - 7	REATHEN	DISCHARGE	- THERMAL	AREA - 1	REATRENT	DISCHARGE	- Thermal
	CHANGER	CODE	12DCJ 3A	17 70	CHAMBER	CIDE	120CJ 4A	17 72
	204 KUSE	111 (.45) SOMSEL HI	17.72	SOUNDSE	HI L. TO		11.12
	TTHE	ATE	C1985	501 417	TTHE	ATP	CUSED	94 M2
	11 RE	TEMP	FS/RESP	KCAL	1111	TENP P	S/RESP	KCAL
		DEGC	607NZ/H	/n//n	A 7A		-0 11/3	-0
	9.97	J.J	-0.102	0.	9E.9	9.E	- 4 . 4 . 4	♦.
	1.08	2.5	~0.043	v.	1. 12	2.3	~ \$, \$ da	Ŷ.
	2.19	2.5	-0.060	Þ.	2.34	2.5	-0.052	Ϋ.
	3,10	2.5	-0.011	¢.	3.31	2.0	-0.034	ę.
	4.13	1.2	-0.080	\$.	4.35	1.0	-9.969	Ŷ.
	5.11	¢.¢	-0.058	۰.	5.37	¢_Q	-0.099	Ŷ.
	6.12	-0.2	-0.036	٥.	s.36	-0.5	-0.034	Q.
	7.09	-0.5	-0.064	٥.	7.35	-0.5	-0.045	0.
	8.10	0 .0	0 .000	53.	8.34	1.1	0.000	6 5.
	9.12	3 .7	0 .529	叩.	9.37	4.0	0.455	141.
	10.11	6.4	0.754	264.	19.37	7.8	Q.749	282.
	11.12	10.0	¢.87¢	311.	11.37	10.4	9.825	323.
	12.11	12.5	0.916	334.	12.37	13.3	¢.878	Эчо.
	13,12	16.2	0.891	328.	13.37	16.4	¢.785	328.
	14.11	16.0	1.023	311.	14.32	16.2	1.013	293.
	15.05	16.0	1.162	229.	15.33	15.7	Ø.928	235.
_	16.08	14.4	0.937	164.	16.31	14.0	0:642	141.
	17.03	12.4	0.480	47.	17.31	11.5	0.049	23.
	18.06	8.0	-0.106	٥.	18. 3 1	8.0	-0.159	۵.
	19.08	8.0	-0.113	٥.	19.30	8.0	-0.231	٥.
	20 07	7 5	-0 109	ò	20.30	7.2	-0.138	0.
	21 64	6.8	-0 145	0	21.71	6.8	-0.168	۵.
	22 60	5.7	-0 094	ά	22 70	5.0	-0.130	Q .
	22. VU	ų ۸	-0.089	ъ. Ф	27 29	3.8	-0.112	Û.
	24.99 201 PD	ч. v 1. A	-0.000	<i>ν.</i>	53.£(ב.י א ר	-0 112	٥
	11. 11	M.V	V. V00	Ψ.	11.11	3.0	*	••

MARSH COMMUNITY METABOLISM DATA

.

Sea Som Collect Area - Dominan Chamber Sun Rose	IDN DATE TREATMEN T SPECIE CODE AT 7.4	VINTER 1 1-6-80 1 DISCHARE 5 SPARTINE 12DCS 1E 5 SUNSET F	980 E - Thermal I 17.72	SE CD Ar DD CH SU	ASUN LLECT EA - MINAN ANBER NROSE	ION DATE Treatment t species code at 7.45	VINTER 1 1- 6-80 DISCHARG SPARTINA 12DCS 28 SUNSET A	980 E - Thermal T 17.72
TIME	AIR TEMP Deg C	CORRD Ps/resp Gc/H2/H	stilar Kcal /112/h	Ţ	INE	AIR Temp Deg C	CORRD Ps/Resp ec/n2/h	solar Kcal /h2/h
4.8 6	1.0	-0.027	٥.	٥	. 13	1.0	-0.059	٥.
1.84	1.0	-0.054	۹.	1	. 10	1.0	~\$.\$ 3 \$	٥.
2.81	1.0	-0.011	٥.	2	, 03	1.0	-0.043	Ŷ.
9. E	2.5	-0.056	٥.	3	\$¢.	2.0	-0.019	\$.
4.77	2.8	-0.049	٥.	4	E0.	2.8	-9.041	٥.
5.75	2.0	-0.045	٥.	5	E0.	2.8	-0.024	٥.
6.73	1.6	E90.0-	¢.	6	. 00	2.\$	-0.019	٥.
7.71	1.6	-0.071	18.	6	. 99	1.6	-0.035	¢ .
8,71	4.1	٥.436	129.	7	. 95	2.0	-0.019	47.
9.82	8.5	Q.095	188.	7	. 02	5.3	0.000	135.
10.77	14.0	-0.242	276.	10	. 05	10.7	¢.¢27	205,
11.76	16.0	-0.313	370.	11	. Ø3	14.2	-0.292	317.
12.73	18.4	0.11 4	346.	12	. 02	17.0	0.053	323.
13.70	<u>1</u> 8.0	Q.152	∃ 4¢,	12	. 97	18.7	0.148	346.
14.74	13.8	-0.017	305.	13	. 99	18.0	-0.023	31.7.
15.74	14.5	E00.0	211.	14	. 99	13.8	\$.\$\$ 9	282.
17.09	12.4	~\$.\$59	100.	15	. 99	14.4	0.000	188.
18.04	6.¢	-0.178	٥.	17	. 31	11.6	-0.054	65.
19.01	¥_¢	-0.090	٥.	18	. 29	5.8	-0.077	Q
20.01	3.¢	-0.079	٥.	19	. 24	3.7	-0.0 <u>3</u> 1	٥.
20.98	2.0	-0.038	٥.	20	. 27	2.8	-0.076	Q.
21.93	2.0	-0.053	٥.	21	. 21	2.0	-0.043	Q .
22.92	1.7	-0.011	٥.	22	. 20	1.5	-0.057	٥.
23.91	1.0	-0.091	Ŷ.	23	. 16	1.0	-0.058	٥.
99,99	1.0	-0.091	٥.	99	. 99	1.0	-0.056	٥.

MARSH COMMUNITY HETAPOLISH DATA

SEASON	TRU DATE	VINTER 1	980		SEASON		UINTER 19	80
AREA -		DISCHARG	e - Thernal		REA -	REATHEN	T DISCHARGE	- THE RHAL
CHAMSER	CODE	12DCJ 36	7 17 70		CHAMBER	CODE	5 JURCUS 12DCJ 48	47 70
SUNKUSE	81 (.4	IJ SOMSEI H	1 17.72	:	SUNBUSE	AT 7.4	5 SUMSET AT	17.72
TTMC	ATE	CDOOR						
1105	TEHP	PS/RESP	KCAL		1111	TERP	PS/RESP	KCAL
4 77	DEGL	6L/NZ/H	/12/1			DEG C	6C/M2/H	/112/11
9.37	1.Ý	-0.100	V.		9.62	1.0	840.0-	9.
1.5	1.9	-0.041	V.		1.69	1.0	-0.089	Q.
2.33	1.0	-0.065	٩.		2.5?	1.4	-0.031	¢ .
3.31	2.¢	-0.142	٥.		3.55	2.4	-0.099	Ģ.
4.27	\$.E	-0.099	\$.		4.53	2.8	E60.0-	٥.
5.27	2.8	-0.124	٥.		5.51	2.4	-0.084	٥.
6.24	1.9	-0.140	٥.		6.49	1.6	-0.074	٥.
7.24	1.6	-0.095	٩.		7.46	1.6	-\$.\$ 3 8	٥.
8.20	3.1	¢.211	7\$.		8.45	8.E	¢.214	100.
9.26	6.4	4E8. 4	135.		9.58	7.7	0 .391	158.
10.30	11.5	1.028	229.	:	10.54	13.7	Q. 611	246.
11.28	14.8	¢.909	346 .	:	11.53	15.8	0.677	358.
12.25	17.5	PE8.0	352.	:	12.49	17.4	0.676	346.
14.24	16.0	-0.028	305.	:	13.48	18.0	Q.669	34¢.
15.24	14.0	Ø.758	258.	:	14.49	14.3	PE0.0-	305.
16.24	15.2	4. 569	158.	:	15.49	14.0	0.443	235.
17.54	٩.5	9.316	35.	:	15.49	<u>1</u> 4.¢	¢.632	129.
18.52	5.0	-\$.118	٥.	:	17.80	7.5	-0.017	18.
19,49	3.7	-0.109	٥.	:	18.77	4.2	-0.005	٥.
20.50	2.4	-0.120	٥.	:	19.74	3.5	-0.073	٥.
21.44	2.0	-0.142	٥.	:	20.71	2.\$	-0.102	٥.
22.44	1.7	-0.120	٥.		21.69	2.0	-0.122	٥.
23.42	1.0	-0,093	٥.		22.68	1.7	-0.099	٥.
99,99	1.0	-0.093	0 .		23.68	1.0	-0.046	٥.
					19.94	1.0	-0.046	٥.

SPRING 1980 SEASOR SEASON CULECTION DATE 3-26-80 AREA - TREATMENT DISCHARGE - THERNAL DOMINANT SPECIES SPARTINA CHARGER CODE 13DCS 1A CALLECTION DATE AREA - TREATMENT DOMINANT SPECIES CHANGER CIDE 13DCS 2A SUNRUSE AT 7.45 SUNSET AT 17.72 SUNRUSE AT 7.45 SUNSET AT 17.72 CORRD PS/PC AIR TEHP AIR 口腔 SILAR ΠÆ 60 DEG C ¢. 91 17.2 -1.91 16.8 -2. З,

MARSH COMMUNITY METABOLISM DATA

23.99

18.0

-0.184

S/RESP C/M2/H	KCAL /M2/H		TEMP Deg C	PS/RESP GC/M2/H
-0.209	٥.	Ø.15	17.9	-0.186
-0.134	Q .	1.15	17.2	-0.160
-0.142	٥.	2.17	16.2	-0.155
-0.138	¢.	3.16	13.5	-0.225
A 11.7	٨	6 19	12 9	-0 719

2.92	13.5	-0.142	\$.	2.17	16.2	-0.155	٥.
3,92	13.0	-0.138	¢.	3.16	13.5	-0.225	65.
4. ¶ 4	12.1	-0.143	\$.	4.19	12.9	-0.318	211.
5.94	12.1	-0.108	٥.	5.18	12.1	-0.322	299.
6.95	13.1	-0.006	53.	6.19	12.1	-0.224	393.
7.96	18.0	0.180	153.	7.20	14.0	0.140	422.
8.95	22.1	9.436	287.	8.21	18.9	Ø.222	246.
9.97	24.2	¢.540	364.	4.22	23.6	0.453	358,
10.98	24.3	¢.199	387.	10.23	24.5	0.478	276.
11.99	26.8	-0.003	240.	11.24	24.5	0.713	211.
13.00	27.¢	0.267	428.	12.24	26.2	Q.328	141.
14.00	24.0	¢.557	334.	13.25	26.9	¢.358	41.
15.02	24.1	0.531	223.	14.26	25.1	Q .458	φ.
16.02	22.8	0.401	217.	15.26	24.1	¢.379	4.
16.84	29.5	0.374	153.	17.09	28.2	Q.22Q	123.
17.85	25.0	0.100	53,	18.10	24.0	-0.124	29.
18.86	19.1	-0.174	٥.	19.11	19.0	-0.142	٥.
19.87	19.1	-0.132	٥.	20.12	19.0	-0.148	٥.
20.87	18.9	-0.128	\$.	21.13	18.2	-0.172	0 .
21.89	18.0	-0.126	Ŷ.	22.13	18.0	-0.110	٥.
22.97	18.0	-0.140	Q.	23.14	17.9	-0.153	٥.

MARSH COMMUNITY METABOLISH DATA

SPRING 1960

SPARTINA

13DCS 2A

CORRD

3-26-80 DISCHARGE - THERMAL

SOLAR

KCAL

/112/11

Q,

٥.

٥.

SEASON Collect Area - Dominan Chamber Sun Rose	TION DATE Treathen It specie Code At 7.4	1 DXIRG 3-26-80 3-26-80 1 DISCHARG 5 JUHCUS 1 DISCJ 34 5 TISCHOR 1 DISCHOR 1 DISCHOR	980 E - Thermal T 17.72		SEASON COLLECT AREA - DOMINAN CHAMBER SUNROSE	ICH DATE TREATHEN T SPECIES CODE AT 7.45	SPRING 19 3-26-80 1 DISCHARGE JUNCUS 13DCJ 4A 5 SUNSET AT	180 - Thermal 17.72
TIME	AIR TEMP Deg C	CORRD Ps/resp Gc/h2/h	solar Kcal /m2/h		ΠÆ	AIR Tehp Deg c	CORRD PS/RESP GC/H2/H	solar Kcal /112/h
¢, ų	17.8	-0.201	٥.		Q.65	17.7	-0.216	٥.
1.41	<u>1</u> 7.0	-0.204	٥.		1.66	17.0	-0.188	٥.
2.41	14.5	-0.161	\$.	,	2.66	14.0	-0.140	٥.
3.42	13.3	-0.161	٥.		3.68	13.1	-0.186	٥.
կ կկ	12.9	-0.182	٥.		4.59	12.4	-0.146	Ο.
5.44	12.1	-0.178	٥.		5.69	12.0	-0.213	٥.
ሪ .	12.0	-0.138	ዋ4.		6.69	12.5	~0.000	29.
7.45	15.0	0.189	246.		7.70	16.2	0.700	123.
8.43	20.1	¢.238	328.		8.71	21.5	0.591	264.
9.47	24.1	¢.367	44¢.		9.72	24.1	0.544	346.
10.48	25.0	0.447	Щ ф.		10.72	25.0	4 .558	463.
11.50	26.0	0. 5 02	399 .		11.74	26.1	Q.594	440.
12,50	24.0	0.54 9	311.		12.74	25.5	¢.554	361.
13.50	26.3	¢.385	287.		13,75	25.2	¢.534	358.
14.51	24.0	¢.388	158.		14.76	25.1	9.658	258.
15, 52	24.0	0.272	106.		15.75	22.7	¢.438	153.
17.85	25.0	0.105	100.		17.60	26.2	99.999	76.
18.35	21.5	-9,252	18.		19.69	19.9	-9.136	¢.
19.36	18.9	-0.259	۵.		19.61	19.1	-0.190	٥.
20.36	18.7	-\$.257	Q.		20.61	19.0	-0.190	٥.
21.39	18.3	-0.213	٥.		21.62	18.1	-0.176	٥.
22. H	18.0	-0.074	Q.		22.63	18.0	-0.235	٥.
23.40	17.9	-0.235	Q .		23.65	17.9	-0.256	٥.

MARSH COMMUNITY METABOLISM DATA

SEASON COLLECT AREA - DOMINAN CHANGER SUNROSE	IDH DATE TREATHER TSPECIE CODE AT 7.4	SPRING 1 3-27-80 AT DISCHARE S SPARTINA 13DCS 1E 15 SUNSET A	980 E - Thermal T 17.72	SEASON Collect Area - Dominan Chamber Sunrose	IDN DATE TREATHEN T SPECIE CODE AT 7.4	SPRING 1 3-27-80 T DISCHARG S SPARTINA 13DCS 28 5 SUNSET A	980 E - Thermal T 17.72
TINE	AIR TEMP Deg C	CDRRD Ps/resp gc/h2/h	Stelar KCAL /M2/H	TINE	AIR TEHP Deg C	CORRD Ps/resp Gc/n2/h	solar Kcal /12/h
Q. 66	17.5	-0.270	٥.	¢. 93	16.8	-0.311	Q.
1.64	16.1	-0.298	ψ.	1.99	16.0	-9.269	¢.
2.67	15.1	-0.204	٥.	2.94	15.1	-0.278	٥.
3. 69	14.9	-0.170	\$.	3.44	14.6	-0.252	٥.
4.70	14.9	-\$.217	٥.	4.92	15.0	-0.208	٥.
5. 68	15.0	-0.220	٥.	5.95	15.0	-0.184	٥.
6.66	15.0	-0.189	23.	5.96	15.0	-0.142	54.
7.72	17.8	¢.097	88.	7.93	19.0	Q.228	147.
8.69	2 0 .¢	Q.267	182.	8.94	19.9	4 .212	117.
9.74	20.8	00E.0	188.	9.98	21.1	0 .342	258.
10.73	25.0	¢.417	305.	10.95	23.8	Q.319	428.
11.74	24.0	0.4 64	299	12.00	24.7	\$.37¢	299.
12.74	25.1	¢.764	287.	12.99	25.4	¢.540	⊒ 46.
13.75	27.0	¢.727	287.	14.02	27.5	¢.35¢	177.
14.76	26.3	¢.407	205.	15.01	25.5	P&E.¢	182.
17.29	21.0	-0.010	100.	18.83	19.7	-0.198	٥.
18.63	<u>1</u> 9.8	-0.193	۹.	19.87	19.5	-0.193	٥.
19.60	19.4	-0.192	¢.	20.83	19.0	-0.102	٥.
20.60	19.4	-0.153	۵.	21,85	18.8	-0.091	¢,
21.60	18.5	-0.121	Ŷ.	22.87	18.7	-0.178	\$.
22.61	18.7	-0.169	٥.	23.91	18.0	-0.173	٥.
23.33	<u>18</u> .¢	-0.199	۹.				

	OMUNITY	METABOLISM	DATA	MAR SH C	DITIUNITY	METABOLISH	dat a
SEASON Collect Area - Dominan Champer Sun Rose	TION DATE TREATMENTS Species Code T AT 7.4	SPRING 1 3-27-80 To Discharg S Juncus 130CJ 36 45 Sunset A	980 E - Thermal IT 17.72	SEASON Collect Area - Dontman Chamber Sunrose	IDH DATE TREATMENT T Species Cude At 7.45	SPRING 19 3-27-80 DISCHARGE JUNCUS 130CJ 46 SURSET AT	180 - Thermal 17.72
TINE	PIA Phyt Des C	CORRD Ps/resp gc/n2/h	solar Kcal /112/11	TINE	AIR Tenp Deg C	CORRD PS/RESP GC/H2/H	solar KCAL /h2/h
¢.15	18.0	-\$.337	٥.	¢.3¶	17.9	-0.209	٥.
1.15	17.\$	-0.363	¢.	1.39	16.3	-0.232	٥.
2.16	16.0	-0.306	٥.	2.40	15.9	-0.230	Q.
3.16	15.1	-\$.311	٥.	3.39	15.2	-0.242	9 .
4.17	<u>1</u> 4.9	-\$.283	٥.	4.41	<u>1</u> 4.9	-0.243	¢,
5.19	<u>15</u> .\$	-0.333	Ŷ.	5.42	15.0	-0.243	¢.
6.17	14.8	-0.293	¢.	6.44	14.9	-0.151	٥.
7.20	15.3	¢.262	70.	7.44	16.0	0.449	9 4.
8.20	18.5	Ø.524	111.	8.44	19.5	0.611	158.
9.18	19.9	0.656	153.	9.45	19.5	0.727	194.
10.24	22.5	1.183	411.	10.47	24.9	0.790	323.
11.24	<u>2</u> 5.9	1.068	711.	11.50	24.¢	Q.752	299.
12.24	24.7	1.081	323.	12.50	24.0	Ø.838	2 9 9.
13.24	26.0	1.042	305.	13, 51	26.5	¢.781	111.
14.26	26.0	¢.822	205.	14.52	25.1	¢ .757	246.
15.27	24.9	¢.652	194.	15.51	23.9	4.576	199.
19.09	19.2	-0.306	٥.	19.33	19.4	-0.209	٥.
20.09	19.5	-0. 33 0	٥.	20.33	19.1	-0.293	Q.
21.09	19.0	-0.245	¢.	21.34	19.0	-0.284	٥.
22.11	18.8	~0.307	٥.	22.37	18.7	-0.321	ΰ.
23,13	18.4	-0.310	٥.	23.37	18.3	-0.318	¢.

.

MARSH COMPUTITY NETABOLISH DATA

SEASON Collecti Area – I Dominani Chamser Sunrose	IIR DATI Reathei Specii Code At 7.1	SPRING E 3-29-80 NT INTAKE ES SPARTIN 13ICS 20 N5 SUNSET	1930 0 - Coxtrol A A AT 17.72
TIME	AIR TEMP Deg C	CORRD PS/RESP 6C/H2/H	silar Kcal /h2/h
¢.98	17.0	-0.071	٥.

1111	DEC C	PS/RESP 6C/H2/H	KCAL /H2/H
¢.99	17.0	-0.071	٥.
1.97	17.0	-0.130	٥.
2,98	17.0	-9.199	ġ.
∃. 9 7	17.0	-0.194	٥.
4.98	17.2	-0.199	٥.
5.99	16.7	-0.173	٥.
6.47	18.8	-0.083	٥.
8.00	23.0	¢.193	돼.
9.01	25.5	\$.37\$	293.
9,99	28.0	0.318	364.
11.01	27.0	¢.232	475.
12.03	28.0	0.057	469.
12.97	27.9	-0.001	452.
14.01	23.7	0.073	164.
14.97	24.5	0.128	217.
15.58	24.0	¢.175	194.
13.99	22.8	-0.001	129.
18.03	21.0	-0.295	12.
19.03	19.0	-0.281	¢.
<u>2</u> ¢.0 <u>1</u>	18.1	-0.313	¢.
20.96	7 799.9	-0.049	Q.
21.96	999,9	-0.023	٥.
22.56	999.9	-0.013	٥.
23.97	17.1	-0.082	٥.

MARSH COMMUNITY RETABOLISH DATA

SEA SON Col Lect Are A - Dom Inan Chamber Sun Rose	IDH DATE TREATMEN TSPECIE CODE AT 7.4	SPRING 1 3-28-84 41 INTAKE 13 JUNGUS 13ICJ 34 45 SUNSET 6	1989 - Control 9 17.72	SEASON COLLECTION DATE AREA - TREATMENT DOMINANT SPECIES CHAMBER CODE SUNROSE AT 7.45	SPRING 1980 3-28-80 INTAKE - CONTROL JUNCUS 13ICJ 4A SUNSET AT 17.72
TINE	AIR TEMP Deg C	CORRD Ps/resp gc/n2/h	solar Kcal /h2/h	RIA 3MIT 29 Anat 30 Jago	CORRD Solar Vresp Kcal Vr2/H /rd2/H
0.19	17.2	-0.145	٥.	4.45 17.2 -	¢.224 ¢.
1.21	17.2	-\$.226	٥.	1.46 17.3 -	0.350 Q.
2.22	17.1	-0.285	٥.	2.43 17.0 -	0.185 Q.
3.21	17.1	-0.288	٥.	3.47 17.1 -	0.417 0.
4.20	17.0	-0.297	٥.	4.46 17.0 -	0.450 0.
5.21	17.0	-0.280	₽.	5.49 17.0 -	\$.394 \$.
4 21	<u>1</u> 6.9	-0.231	Q.	6.45 16.9 -	. • EEE. 4
7.21	19.0	0.502	٥.	7.47 20.1).294 23.
8.21	22.0	¢.898	129.	8.59 25.1	1.343 235.
9.25	27.0	1.273	305.	9,51 26.5	1.162 346.
10.25	28.0	¢,888	393.	10.50 28.9	1.125 416.
11.23	28.0	¢.907	481.	11.50 28.0	1.335 463.
12.23	27.7	0.802	463.	12.51 27.1	109 463.
13.24	27.0	0.720	428.	13.46 26.8	976 387.
14.24	24.9	¢.725	211	14.49 24.5	.040 240.
15,26	25.1	0.819	211.	15.48 27.0	.212 . 370,
16.26	25.2	¢.595	399.	16.49 25.0 1	. 068 243.
17.26	23.0	¢.246	158.	17.49 21.9 99	1.9% 65.
18.28	20.0	-0.389	18.	18.49 <u>1</u> 9.2 -(.317 12.
19.26	18.6	-0.435	٥.	19.50 18.5 ~(9. 3 61 \$.
20.25	18.0	~\$,444	٥.	20.52 18.0 -0	.312 0.
21.23	999.9	-0.070	٥.	21.47 999 .9 -4	.051 0.
22.19	71 9.9	-0.048	٥.	22.46 999 9.9 -0	. ¢64 0.
23.19	<u>1</u> 7.0	-0.124	φ.	23.45 17.0 -0	.177 0.

SEASON		SUMMER 1 7-4-80	1980) - CRNTERI	SE	ASON Illecti		SUHHER 7- 4-8	1980 0 - CONTROL
DOMINAN	TSPECIE	S JUNCUS	, ,	90 91	HIHAN	SPECIES	ANACUS	
CHAREEK Suxrose	AT 7.4	IT SURSET I	7 NT 17.72	SL	in Neuse	AT 7.45	SUMSET	AT 17.72
ΠÆ	AIR TENP DES C	CORRD PS/RESP CC/2/H	SOLAR KCAL	1	INE	AIR TEMP DES C	CORRD PS/RESP FC/H2/H	STEAR KCAL
0 75	27.0	-0.184	Q.	1	. 01	27.0	-0.275	۹.
1 77	26.0	-0.184	Q,	2	2. 02	26.0	-0.239	Q.
2 78	26.0	-0.182	¢.	3	1.04	26.0	-0,179	٥.
3 80	25.0	-0.193	Ŷ.	Ļ	1.05	25.0	-0.234	٥.
4 87	25.0	-0.179	0.	L.	i. 07	25.0	-0.145	Q.
5 83	24.5	-0.166	0.	4	5. 68	25.0	-0.217	٥.
6 85	27.0	-0.048	18.	ī	7.37	Ø.₽E	0.125	82.
7 11	18.0	0.041	59.	8	3.38	38.5	0.484	70.
8 13	37.5	99,990	117.	G	1.40	38. ¢	0.458	223.
9 14	37.0	99,990	199.	10) 41	37.¢	99.990	317.
10 16	36.5	99,990	282	11	43	36.¢	0.596	422.
11 17	36.¢	0.565		12	2 44	34.0	0.387	434
12 19	36.0	0.350	481.	13	1.45	38.0	0.281	458.
17 20	77.0	0.545	464.		1.47	40.0	0.533	411.
14 22	39.0	0.492	443.	15	i. 49	43.0	0.576	370
15 77	42.5	0.503	358.	16	50	42.0	0.514	299.
16 25	42.5	0.545	328.	17	52	43.0	0.512	246.
17 27	43.0	Q.455	258.	19	1.53	42.5	¢.439	147.
18 28	42.5	0.355	170	19	55	9.PE	0.152	53.
19 70	74.5	0.176	88	20	57	31.5	-0.185	¢.
20 31	31.5	-0 117	6	21	58	30.0	-0.259	۵.
21 77	70.0	-0.187	0	23	9.98	28.5	-0.307	٥.
22. 22	28.5	-0 213	0	27	99	27.0	-0.229	ĩÔ.
27 74	27 0	-0.714	۵.					7.
	- · · 7		* •					

MARSH COMMUNITY NETABOLISM DATA

SEASON Collect Area - Dominan Changer	ION DATE TREATHEN T SPECIE CODE	SUMMER 1 7-5-80 TINTAKE - SSPARTINA 14ICS 18	L980) - Control) }	SEAS CDL1 AREF DUMJ CHAT	UR Lection dati A - treathei Inant speci Iber code	SUMMER E 7-5-6 NT INTAKE ES SPARTIN 14ICS 2	1980 30 - Control 1A 25
SUHROSE	AT 7.4	15 SUNSET F	17.72	SUKE	HOSE AT 7.	45 SUNSET	AT 17.72.
TINE	AIR TEHP Deg C	CORRD Ps/resp Gc/112/H	solar Koal 7n2/h	TIT	NE AIR Tenp Deg C	CURRD Ps/resp Gc/n2/h	Solar Kcal /H2/H
Q.62	40.0	-0.171	٥.	¢, 8	}7 4 0 .0	-9.203	9.
1.63	40.0	-0.152	۹.	1.8	39 40.0	-0.193	٥.
2.65	40.0	-0.185	¢.	2.5	ło 40.0	-0.213	٥.
3.66	34.0	-0.203	Q.	3.5	¢. EE \$	-0.251	0,
4.68	9.EE	-0.204	¢.	ų.¤	4.4E EF	-9.284	٥.
5.69	29.5	-0.128	٥.	5.4	15 29.5	-0.224	٥.
6.71	29.5	-0.109	б.	6.5	13 29.5	-0.044	19.
7.72	9.CE	9.226	59.	7.9	0.6E 86	0.314	70,
8.74	3 8.¢	Q.203	194.	8. ^c	Ø.8E P	¢.359	246.
9,75	39.¢	¢.28 9	311.	10.0	4.PE 10	¢.324	328.
10.77	0.PE	¢.553	411.	11.0	02 39.0	9.462	411.
12,43	92.¢	¢.498	4538.	12.6	9 32.¢	¢.534	387.
13.45	34.0	¢.466	475.	13.7	YQ 40.0	¢,547	481.
14.46	4Q.Q	¢.359	434.	14.7	2 40.0	0.505	434.
15.48	40.0	¢.753	411.	15.7	' 3 40.0	P03.0	399.
16.49	40.0	o.450	∄⊷⊀.	16.7	5 40.0	0.620	334.
17.51	4¢.¢	0.501	264.	17.7	16 40.Q	Q.469	147.
18.52	4 0 .0	0.403	47.	18.7	'9 4¢.¢	0.587	47.
19, 54	40.0	0.142	53.	19.7	ዋ 40.0	0.110	29.
29.55	49.0	-0.114	٥.	20.8	1 40.0	-0.103	٥.
21.57	40.0	-9.105	¢.	21.8	2 40.0	-0.101	٥.
22.59	4¢.¢	-0.171	¢.	22.8	4 40.0	-0.169	٥.
23.60	40.0	-0.142	Q .	23.8	5 40.0	-0.241	٥.

MARSH COMMUNITY METABOLISM DATA

SEASON		SUMMER	1980	SEAS		SUHHER	1980
AREA -	TREATHER	IT INTAKE	- Control	AREA	- TREATHE	NT INTAKE	- CONTROL
CHANGE		14ICJ 3	B	CHAN	BER CODE	14ICS	10 48 AT 17 70
ZAKKOZE	. AT 7.4	id sunset i	at 17.72	2048	ust fil (.	40 2083F1	HI 17.7Z
****	AT0	00000	051 45		F ATS	68885	CD1 AD
11NL	TEHP	PS/RESP	KCAL	111	TEMP	PS/RESP	KCAL
	DEEC	6078278	/52/11		UE6 5	60/112/H	78278
Q.11	40.0	-0.708	Q.	¢.4	6 40.0	-0.302	¥.
1.12	40.0	-0.187	φ.	1.3	8 40.0	-0.286	Þ.
2.14	40.0	-0.130	٥.	2.3	9 40.0	-0.325	Û,
3.15	40.0	-0.194	٥.	3,4	1 34.0	-0.428	ġ.
4.17	9 .EE	-0.177	٥.	4.4	2 <u>33</u> .0	-0.352	Ŷ.
5.19	\$.\$E	-0.247	٥.	5.4	4 29.5	-0.406	¢.
6.20	29.5	-9.168	٥.	<u>8.4</u>	5 29.5	-0.241	¢.
7.22	32. ¢	Q.256	29.	7.4	7 32.5	¢.22¢	47.
8.23	\$.7E	¢.378	106.	8.4	9.7E P	0.720	147.
9.25	9.PE	0.702	282.	9.5	¢ 39.5	1.204	317.
10.26	9. ₽E	\$.925	399.	10.5	2 39.¢	¢.949	405.
11.92	34.5	0.608	434.	11.5	9.PE E	99.990	411.
12. PH	40.0	¢.073	352.	12.1	8 <u>3</u> 2.¢	\$.622	446.
13.95	40.0	Q.486	475.	13.1	9 40.0	¢.623	469.
14.97	40.0	¢.597	422.	14.2	1 40.0	0.560	458.
15. 9 9	40.0	0 .700	387.	15.2	2 40.0	9.546	422.
17.00	40.0	0.719	305.	16.2	ц ц¢,¢	0.593	364.
18.02	40.0	0.724	82.	17.2	5 40.0	Q.476	287.
19 07	40.0	0.548	47	18.2	7 40.0	0.343	65.
20 05	40 O	-0 123	12	19.2	9 40,0	¢.352	54.
21 64	40 O	-0 213	<u>۔</u>	26 3	0 40.0	-0.170	6
11. YU	۲.Y	-0 219	÷.	21 7	2 40 0	-0 177	۵.
22.90 03 Ad	17.Y	-0 200	۰.	L . L 2	μά Δ	-0.205	۰.
4J. 97	44.4	¥.204	₩.	۲. ۲۲ ۲. ۲۵	5 LAA	-0 200	7. A
				23.3	5 44.4	-\$.388	\$.

MARSH COMMUNITY RETABOLISH DATA

SEASTR	7 114 10475	SUMMER :	1980	SEASON	THU RATE	SUMMER 19	80
	TREATHEN	T DISCHAR	e - Therefal	AREA -		T DISCHARGE	- THE RHAL
CHANGER	CODE	14DCS 2	1	CHAMBER	CODE	S JUNCUS 14DCJ 3A	
SUMROSE	AT 7.4	5 SURSET I	AT 17.72	SUNRESE	AT 7.4	5 SUNSET AT	17.72
TIME	AIR TEMP	CORRD PS/RESP	Solar Kcal	TITE	AIR TEMP	CORRD PS/RESP	<u>Splar</u> Kcal
	DES C	60/112/11	/112/11		DES C	GC/M2/H	/112/11
¢.83	29.5	-0.211	\$.	0.07	29.0	-0.382	٥.
1.84	29.5	~Q.229	Q .	1.08	9.0E	-0.383	Ø.
2.85	0.0E	-0.159	Ø.	2.09	4.9Ε	-0.230	Q .
3.87	0.0E	-0.170	Ŷ.	3.11	9. ØE	-\$.212	¢ .
4.88	29.0	-0.184	۵.	4.12	9.9E	-\$.233	¢.
5.89	28.0	-0.229	٥.	5.13	28.0	-0.3 <u>3</u> 0	Q.
6. 90	28.0	-0.176	12.	6.14	28.0	-0.413	Q.
7.91	28.0	0.15 8	88.	7.15	28.0	-0.240	23.
8.93	28.0	¢.651	189.	8.17	28.0	0.183	111.
9.94	34.0	99.9 90	3 40.	9,18	28.0	¢.458	205.
10.95	34.0	99.990	352.	10.19	34.¢	0.552	287.
11.96	34.0	0.600	270.	11.20	34.¢	0.620	375.
12.97	34.0	¢. \$2 5	305.	12.22	34.0	0.666	293.
13.99	93.¢	-0.028	428.	13,23	34.Ø	0.538	305.
15.00	34.¢	-0.022	458.	14.24	94.¢	¢.538	411.
16.01	32.¢	¢.289	323.	15.25	34.0	¢,5¢¢	3 9 3.
17.02	30.0E	99.990	76.	1ó.2ó	32.0	¢.542	328.
18.03	28.0	-0.116	18.	17,28	29.0	99.590	47.
19.05	28.0	-\$.182	۵.	18.29	28.0	-0.283	18.
20.06	26.0	-0.188	\$.	19.30	27.5	-0.309	б.
21.07	29.5	-0.199	· \$.	20.31	27.0	-0.354	Φ.
22.08	22.0	-\$.229	٥.	21.32	29.5	-0.235	٥.
22.81	28.0	~0.326	۵.	22.34	22.0	-0.342	Ŷ.
23.82	29.0	-0.307	٥.	23.03	28.5	-0.393	Ø,

MARSH COMMUNITY METABOLISH DATA

SEASON Collect Area - Dominan Changer Sunross	TION DATE TREATHEN T SPECIE CODE AT 7.4	SUMMER 1 7-11-80 MT DISCHARG S JUNCUS 14DCJ 4A 5 SUMSET A	980 E - THERMAL T 17.72		SEASON COLLECT AREA - Dominan Chamber Sukrose	ICH DATI TREATHEI I SPECII CIDE AT 7.1	SUMMER 19 E 7-12-80 NT DISCHARGE ES SPARTINA 14DCS 26 45 SUNSET AT	80 - Thermal 17.72
TINE	AIR TEHP Deg C	CORRD Ps/resp GC/M2/H	solar Kcal /112/11		TIME	AIR Tehp Deg c	CORRD Ps/resp Gc/m2/h	solar Kcal /hz/h
<u>4.32</u>	<u>2</u> 9.0	-0.351	¢.		Q.11	26.0	-0.185	¢.
1.34	29.0	-0.259	Ô,	-	1.12	27.5	-0.176	ę.
2,35	\$.\$E	-0.189	٥.		2.13	29.4	-0.163	9 .
3.38	9. ØE	-9.216	¢.		3.14	29.0	-0.087	٥.
4.37	9.9E	-0.270	¢.		4.16	0.0E	-0.133	٥.
5.39	28.0	-9.328	¢.		5.17	30.5	-0.155	۵.
6.4Q	28.0	EPE.9-	Ô.		6.18	30.5	-0.166	4 .
7.41	28.0	-¢.¢92	35.		7.14	29.0	-0.127	18.
8.42	27.0	Q. 379	129.		8.20	32.5	Ø.302	100.
9.43	∃2.¢	0.720	223.		9.22	\$.\$E	99.590	223.
10.44	34.¢	¢.835	317.		10.22	97.Q	99.99¢	299.
11.46	34.0	0.87 0	375.		11.24	9.PE	0.401	364.
12.47	∃4.≬	¢.848	317.		12.25	9.PE	0.721	293.
13.48	34.Ø	\$. 6 79	211.		13.26	42.0	4.148	510
14.49	∃ 4.¢	0.641	411.		14.20	42.\$	-0.031	ц Эч.
15. 50	34.¢	\$.687	410.		15.29	42.0	-0.102	458.
16.52	91.0	99.990	305.		16.3¢	38.5	-0.131	35.
17.53	28.5	99.990	35.		17.31	40.0	0.342	141.
18.54	28.0	-0.206	12.		18.32	9.PE	-0.034	23.
19.55	28.0	-0.280	б.	:	19.34	9.PE	-0.141	12.
20.56	25.0	-0.286	٥.	:	20.35	9.PE	-0.129	\$.
21.58	24.0	-0.235	\$.	:	23.09	24.5	-0.043	\$.
22.59	22.5	-\$.302	Q.					
23.31	28.5	-0.351	Q.					

MARSH COMMUNITY METABOLISM DATA

MARSH COMMUNITY METABOLISH DATA

SEASON COLLECI AREA - DOHINAN CHAMBER SUKROSE	TION DATE TREATHEN IT SPECIE CODE AT 7.4	SUMMER 1 7-12-80 T DISCHARE S JUNCUS 14DCJ 3E 5 SUMSET A	980 E - THERMAL T 17.72	SEASON COLLECT AREA - DOMINAN CHAMBER SUNROSE	EUN DATE IREATHENT I SPECIES CIIDE AT 7.45	SUMMER 19 7-12-80 DISCHARGE JUNCUS 14DCJ 48 SUNSET AT	180 - Thermal 17.72
TIME	AIR Temp Deg C	CORRO PS/RESP SC/H2/H	solar Kcal 7h2/h	TI性	AIR TEMP Deg C	CDRRD PS/RESP SC/H2/H	Solar Kcal /h2/h
\$.33	27.0	-0.317	¢.	Q. 51	27.0	-9.253	\$.
1.37	<u>2</u> 8.0	~9.293	٥.	1.63	28.0	-0.257	٥.
2.38	28.5	90E.9-	٥.	2.64	29.0	-0.256	٥.
3.40	29.0	-0.206	٥.	3.65	0.0E	-0.159	ψ.
4.41	9.9E	-0.159	٥.	4.66	ġ.ĢE	-0.205	¢.
5.42	30.5	-¢.233	¢.	5.67	30.5	-0.239	¢.
ó.43	30.5	-0.363	Ŷ.	ø. 89	3¢.5	-0.312	٥.
7.44	9.9E	-0.193	29.	7.70	31.0	-0.001	59.
8.46	34.0	0.284	141.	8.71	35.¢	0.402	164.
9.47	96.0	0.531	246.	9. 7 2	97.¢	¢.573	176.
10.48	38.0	0.575	∃40.	10.73	38.5	0.720	305.
11.49	9.8E	0.665	15 2.	11.75	40.0	Ø.766	411.
12.50	42.¢	o.334	469.	12.76	41.5	Ø.942	364.
13.52	42.\$	¢.544	147.	13.77	41.5	\$88E.¢	70.
14.53	41.0	¢.377	∃4¢.	14.78	42.0	¢.434	70.
15.54	42.0	\$. \$ 68	З5,	15.79	\$.PE	-0.035	35.
16.55	37.¢	-0.054	41.	13.81	98.Q	0.099	7¢.
17.57	4.PE	4 .238	235.	17.82	40.0	¢.173	82.
18.58	3 ₽.¢	-0.149	29.	18.83	9.PE	-0.119	35.
19.59	9.PE	-0.242	12.	19.84	0.PE	-0.226	۶.
23.35	24.5	-0.331	٥.	23.60	25.0	-\$.266	٥.

.

MARSH COMMUNITY NETABOLISH DATA

SEASON Collect Area - Doninan	IIN DATE TREATHEN T SPECIE	FALL 19 10-5-8 T INTAKE S SPARTIN	80 9 - Control A	Season Collecti Area - 1 Duathan	IDN DATE	FALL 198 10- 5-80 I INTAKE -	30) - Control
Chanber Sukrose	CODE AT 7.4	15ICS 1 5 SUNSET	A AT 17.72	CHANGER	CIIDE AT 7.4	15ICS 24	T 17.72
ΠÆ	AIR TEMP Deg C	CORRD PS/Resp GC/H2/H	selar Kcal /h2/h	TIME	AIR TEHP Deg c	Corrd Ps/resp 6c/n2/h	solar Kcal /112/H
¢.63	16.0	-0.082	٥.	¢.89	16.0	-0.058	¢,
1.62	16.0	-\$.\$68	9 .	1.83	16.0	-0.029	Q.
2.57	16.0	-0.082	\$.	2.81	16.0	-0.115	٥.
3.57	16.0	-0.123	ø.	3.79	16.0	-0.086	۴.
4.52	16.0	-0.164	٥.	4.77	15.5	-9.129	9 .
5.53	14.5	-0.137	٥.	5.78	14.0	-0.130	\$.
6.53	13.0	-0.125	Q.	6.73	43.EL	-¢.¢97	\$.
8.44	17.5	0.163	76.	7.71	13.5	-0.116	\$.
9.40	22.9	0.525	164.	8.67	18.0	0.028	100.
10.40	25.0	0.700	299.	9.65	23.0	¢.235	176.
11.41	29.0	Q.290	381.	10.65	26.0	0.467	328.
12.41	2.9	¢.972	4 <u>3</u> 4.	11.63	29.0	0.221	349 .
13.41	29.0	0.691	428.	12.64	29.0	0.460	434.
14.42	29.5	0.690	364.	13.65	29.0	9.316	418.
15.42	\$.\$E	Ø. 899	264.	14.65	\$.\$E	0 .458	328.
14.42	91.¢	¢.641	217.	15.65	0.0E	99.990	252.
12.94	29.5	Ø.530	153.	16.69	31.0	¢.353	199.
18.42	24.0	¢.228	54.	17.69	29.¢	¢.203	129.
19.43	20.5	-0.174	Ø.	18.57	24.0	-0.106	47.
19,73	20.0	-9.214	٥.	19.67	20.0	-0.158	٥.
20.73	20.0	E\$E_\$-	Q.	19.98	20.0	-0.248	٥.
21.73	<u>18</u> 0	-0.122	Ŷ.	20.48	19.0	-0.257	٥.
22.94	16.5	-0.165	Q .	21.99	17.0	-0.144	٥.
23.67	16.0	-0.110	Q.	22.44	16.5	-0.057	\$.
				23.90	16.0	-0.029	Ø.

MARSH C	OMUNITY	METABOLISM	I DATA	HARSH C	DIMUNITY	METABOLISI	t data
SEA SON Collect Area - Dominan Chamber Sun Rose	ION DATE TREATHEN SPECIE CODE AT 7.4	FALL 198 I I O- J-80 I INTAKE - S JUNCUS 15ICJ 37 S SUNSET 6	00 - Control 11 17.72	SEASON Collect Area - Dominan Chahber Sunrose	ICH DATE TREATHEN T SPECIE CODE AT 7.4	FALL 198 10-5-80 TINTAKE - SSPARTIK 15ICS 47 15 SUNSET 7	0 - CONTROL 1 1 17.72
TIME	AIR TEHP Deg C	CŪRRD Ps/resp gc/m2/h	solar Kcal /h2/h	TIME	AIR TEMP Deg C	CORRD Ps/resp Gc/n2/h	Solar Kcal 71271
¢.13	16.0	-0.078	٥.	¢.38	16.0	-0.153	Q.
1.13	16.0	-0.098	٥.	1.38	16.0	-0.087	۴.
2.09	16.0	-0.118	٥.	2.36	15.0	-0.131	\$.
3.07	16.0	-0.117	٥.	3.27	16.0	-9.198	٥.
4. 0 7	16.0	-0.195	٥.	4.27	16.V	-0.131	٥.
5.03	12.5	-0.197	٥.	5.28	14.5	-0.242	٥.
EQ. 8	14.0	-9.295	Q.	6.28	14.0	-0.044	٥.
7.01	12.5	~0.237	٥.	7.29	13.0	-0.221	Ŷ.
7.94	14.5	-0.079	35.	8.17	16.0	-\$.\$88	47.
8.92	19.0	1.160	123.	9.17	21.0	1.039	153.
9.90	24.0	1.200	205.	10.15	24.5	1.025	264.
10.90	28.0	¢.735	352.	11.16	28.0	0.300	370.
11.89	29.0	1.096	418.	12.16	29.0	¢.568	428.
12.87	29.0	1.014	434.	13,16	29.0	0.702	434.
13.87	29.0	1.095	3 99 .	14.15	29.0	Q.610	381.
14.90	\$.\$E	99.990	311.	15.18	9.9E	-0.508	287.
15.93	31.0	¢.946	246.	16.18	91.¢	99.990	235.
16.94	91.¢	1.218	188 .	17.19	0.0E	0.752	170.
17.92	28.0	¢.648	106.	18.19	27.0	Ø.590	88.
18.92	24.0	-0.210	35.	19.20	21.0	-0.216	٥.
19.92	20.0	-9.246	٥.	20.18	20.0	-0.259	٥.
20.18	19.0	-\$.387	٩.	20.43	19.0	-0.348	Ø.
21.24	19.0	-0.290	۵.	21.49	18.0	-0.218	٥.
22.22	17.0	-0.312	٥.	22.44	16.0	-0.108	٥.
23.15	16.0	-0.156	Ф.	23.45	16.0	-0.175	٥.

MARSH COMMUNITY METABOLISH DATA

SEASON COLLECT AREA - DOMINAN CHANDER SUNROSE	ILH DATE Treathen I specie Code At 7.4	FALL 198 (9-5-80 IT INTAKE - S SPARTINA 15ICS 18 5 SUNSET 6	0 Control 5 17 17.72	SEASON Collect Area - Dominan Chamber Sun Rose	IIN DATE TREATHEN T SPECIE CODE AT 7.4	FALL 198 10-5-80 11 INTAKE - 25 SPARTINA 15ICS 28 45 SUNSET A	30 - Control 5 17 17.72	
TIME	AIR Temp Deg C	CORRD PS/RESP GC/H2/H	Stear Kcal /112/11	TINE	AIR Tehp Deg c	CORRO PS/RESP GC/N2/H	solar Kcal /12/h	
6.33	19.5	-0.081	٥.	Q.58	<u>1</u> 9,0	-0.091	Ŷ.	
1.73	18.0	-0.123	٥.	1,59	18.5	-4.137	٥.	
2.27	18.0	-\$.3\$2	Φ.	2.51	17.0	-9.248	۹.	
3 . 27	16.0	-0.249	\$.	3.52	16.0	-\$.249	٥.	
4.19	16.9	-0.221	Û,	կ,կֆ	16.0	-0.208	٥.	
5.65	22.4	-0.189	Ŷ.	5.35	22.0	-0.163	٩.	
6.93	24.0	-0.188	٥.	6.26	26.0	-0.214	¢ .	
6.91	21.5	-0.135	0.	7.11	21.0	-0.190	¢.	
7,81	21.0	Q.026	47.	9.97	22.5	-0.001	76.	
8.77	26.5	¢.344	1明.	8.95	28.0	0.209	205.	
9.37	<u>28</u> .¢	¢.472	276.	9.88	28.5	0.314	299.	
10.60	9.9E	¢.631	352.	10.80	0.0E	0.417	364.	
11.56	0.EE	0.740	422.	11.81	\$3.¢	0.517	422.	
12.57	34.0	0.808	4 34.	12.82	34.¢	¢.437	422.	
13.57	35.5	Ø.79Ø	387.	13.83	35.5	¢.435	37 5.	
14.57	96.Q	¢.744	13 4.	14.84	32.5	0.179	235	
15.57	96.¢	0.702	252.	15.85	0.6E	0.356	229.	
16.57	96.0E	Q.643	188.	16.86	35.¢	Q.281	164.	
17.57	31 .5	¢.457	106.	17.97	28.5	0.0 <u>51</u>	88.	
20.43	19.0	-0.108	٥.	20.69	18.0	-0.135	٥.	
21.41	18.0	-0.136	٥.	21.69	18.4	-0.109	٥.	
22.43	18.0	-0.136	٥.	22.67	18.0	-0.109	٥.	
23, 37	20.0	-0.081	ΰ.	23.62	20.0	-0.162	٥.	

MARSH CUMMUNITY METABOLISM DATA

SEASON COLLECT AREA - Dominan Changer Sunrose	TREATMENT TREATMENT SPECIN CODE AT 7.4	FALL 190 E 19-5-00 AT INTAKE S JUNCUS 15ICJ 31 AS SUNSET (00 - Control 5 17 17.72	SEA SUN CULLECT AREA - DOMINAN Chamber Sun Rose	IIDN DAT TREATHE IT SPECI CODE AT 7.	FALL 19 E 10- 5-8 NT INTAKE ES JUNCUS 15ICJ 4 45 SUNSET	80 0 - Coxtrol B At 17.72
TIME	AIR TEHP Deg C	CORRD Ps/resp Gc/n2/h	Solar Kcal /M2/H	TIME	AIR Temp Des c	CORRD PS/RESP GC/H2/H	STEAR Keal /12/11
¢.85	18.5	-0.208	٥.	\$.12	29.0	-0.254	\$.
1.78	18.5	-0.321	٥.	1.08	18.5	-¢.215	¢.
2.76	16.5	-¢.339	۴.	2.¢3	18.0	-0.475	٥.
3.77	16.0	-0.226	ΰ.	3.01	16.0	-0.347	۵.
4.65	2¢.¢	-0.207	٥.	3,94	16.0	-0.261	٥.
5.60	24.0	-0.252	Φ.	4.90	20.0	-0.171	٥.
6.46	24.0	~\$.22\$	٩.	5.84	24.0	-0.211	٥.
7.34	21.0	-0.159	29.	6.68	22.0	-0.212	٥.
8.29	24.0	0.501	117.	7.53	20.5	-0.001	29.
9.17	28.0	Q.647	235.	8.54	26.0	1.041	176.
10.13	30.0	1.315	코7.	9.42	27.0	1.109	252.
11.06	31.0	1.207	38 7.	10.35	4.¢E	1.131	33 4.
12.09	33.0	i.131	434.	11.31	32.0	1.024	405.
13.09	∃4.≬	1.333	મ્વેઠ.	12.31	∃4. ¢	0 .853	434.
14.07	35.5	1.393	352.	13.32	∃5.¢	Q.865	4 0 5.
15.97	\$.8E	0.914	223.	14.32	35.¢	¢. 668	328.
16.07	96.9E	1.357	217.	15,32	34.0	0.819	164.
17.07	∃4.≬	1.127	147.	16.32	9.8E	0 .717	211.
18.60	28.¢	0.173	59.	17.32	93.¢	Q.692	135.
20.93	18.0	-0.240	\$.	21.16	18.0	-\$.30\$	٥.
21.94	18.0	-0.192	٥.	22.19	18.0	-0.343	٥.
22.89	18.0	-0.128	۵.	23.14	20.0	-0.320	٥.
23.85	20.5	-0.238	¢.				

MARSH COMMUNITY NETABOLISM DATA

SEASON Collect Area - Dontinan Chander Sukross	TION DAT TREATME T SPECI CODE E AT 7.	FALL 198 E (Q-11-80 NT DISCHARG ES SFARTIKA 15DCS 1A 45 SUNSET A	e - Thermal F - Thermal T 17.72		SEASON COLLECT AREA - DOMINAN CHANBER SUMROSE	IDH DATE TREATMENT T SPECIES CODE AT 7.45	FALL 1980 10-11-80 DISCHARGE SPARTINA 15DCS 2A SURSET AT	- Thermal 17.72
TINE	AIR TEMP Deg C	CORRD Ps/resp gc/n2/h	solar Koal /H2/H		TIME	AIR Tehp Deg C	CORRD Ps/resp GC/H2/H	solar Kcal /h2/h
4.B2	21.0	-0.040	\$.		0_04	22.0	-0.104	¢.
1.79	20.0	-0.065	٥.		1.93	29.5	-0.028	Ŷ,
2.71	21.5	0.000	٥.		2.02	20.0	-0.040	٥.
3.65	22.\$	-0.040	٥.		2.97	22.0	-0.042	Q.
4.63	22.0	-0.070	٥.		3.87	22.0	-0.009	٥.
5.56	20.0	-0.103	¢.		4.86	22.0	-0.066	٥.
6.55	20.0	-9.117	٥.		5. 8 0	20.0	- ◊ . ◊ ٩ሪ	٥.
7.49	20.0	-0.146	117.		ó.8¢	20.0	-0.115	¢.
8.43	24.0	-0.071	70.		7.74	22.0	-\$.\$42	117.
9.44	27.0	Q.253	176.		8.69	26.0	Q. 098	¶4.
19.49	96.9E	-9.012	243.		9.70	32.¢	0.107	199.
11.53	9.8E	¢.29¢	3231.		10.74	34.5	-0.051	264.
12.55	92.¢	0.316	323.		11.78	9.8E	0.104	328.
13,58	32.¢	¢.331	299.		12.82	∃4.¢	Q.144	311.
14.63	0.EE	0.302	340.		13.84	∃2.¢	¢.225	317.
15.67	3 4.¢	¢.129	299.		14.89	9.EE	0.169	348.
15.68	29.5	0.023	217.		15.93	34.0	0.050	282.
17.73	28.5	0.037	129.		16.95	28.5	0.024	194.
18.76	25.0	-0.138	23.		18.00	27.0	-0.002	106.
19, 81	25.¢	-0.191	٥.		19.05	25.0	-0.164	12.
21.73	22.0	-0.161	۵.		20.09	25.0	-0.164	٥.
22.77	20.0	-0.142	٥.		21.99	22.0	-0.127	٥.
23.71	22.0	-9.111	Q.	*	23.02	19.0	-0.115	٥.
99.99	<u>2</u> 5.0	-0.191	ø.		99.99	25.0	-0.164	٥.

MARSH COMMUNITY NETABOLISM DATA

SEASDH Collect Area - Dom Than Chambed Sun Rose	TICH DATE TREATHEN IT SPECIE CODE E AT 7.4	FALL 198 10-11-80 11 DISCHARG 15 JUHCUS 15DCJ 3A 15 SUNSET A	0 E - Thermal T 17.72		SEASTIN Collect Area - Dom Inan Chamber Sum Rose	ICH DATE TREATMENT T SPECIES CDDE AT 7.45	FALL 1980 10-11-80 DISCHARGE JUNCUS 15DCJ 4A SUNSET AT	- THERMAN 17.72
TIME	AIR TEMP Deg C	CORRD Ps/Resp GC/H2/H	solar Kcal /h2/h		TINE	AIR Tenp Deg c	CORRD PS/RESP GC/112/H	solar Kcal /112/h
0.30	21.0	-0.069	٥.		¢.54	<u>22</u> .¢	-0.245	\$.
1.27	20.0	-0.225	٥.		1.52	20.0	-0.129	٥.
2.27	21.0	-0.137	٥.		2.49	21.5	-0.062	٥.
3.14	22.¢	-0.120	Ø.		3.51	22.0	-0.123	٥.
4.11	22.0	-0.137	٥.		4.50	22.\$	-0.162	\$.
5.10	21.5	-0.241	۴.		5 .30	20.0	-0.191	٩.
6.06	20.0	-9.242	٥.		6.29	20.0	-0.149	٥.
7.00	20.0	-0.324	Þ.		7.20	20.Q	-0.135	٩.
7.93	21.0	0.076	Э5.		8,19	22.0	Q .282	47.
0.95	<u>28</u> .0	¢.480	135.		9.18	28.0	Q.353	153.
9.96	35.¢	\$. 49 7	217.		10.22	36.¢	0.510	235.
10.00	0.PE	0.518	293.		11.27	0.EE	¢ . ሪካሪ	305.
12.02	35.5	0.544	328.		12.28	31.5	Q.526	328.
13.06	34.0	¢.527	299.		13.32	34.0	Q.407	299.
14.10	32.≬	0.531	∃∃ 4.		14.37	32.0	0.427	340.
15.15	34.\$	¢.504	329.		15.42	34.0	0 .457	317.
16.19	∃ 4.¢	¢.527	270.		16.45	34.0	¢.442	252.
17.23	28.5	¢.342	176.		17.49	29.0	¢.32?	153.
18.27	26.0	0.044	76.		18.53	25.5	-0.054	59.
19.31	25.0	-0.219	٥.		19.57	25.0	-0.246	٥.
20.33	29.5	-0.236	٥.		20.56	29.0	-0.242	٥.
22.26	21.0	-0.284	٩.		22.51	20.5	-0.189	٥.
23.39	<u>2</u> 0.0	-0.214	Ŷ.		23.55	27.0	-\$.181	٥.
99.99	29.5	-0.235	٥.		99.99	29.0	-0.242	Φ.

MARSH COMMUNITY METABOLISH DATA

Season Collect Area - Dominat Chamber Sukross	TREATHE TREATHE IT SPECI CODE E AT 7.1	FALL 190 E (Q-12-B) NT DISCHAR SSPARTING 150CS 11 45 SURSET (80 95E - Thermal 9 9 9 9 17.72		SEASON Collect Area - Dominan Chamber Sun Rose	TUN DATE TREATMENT T SPECIES CODE AT 7.45	FALL 198 10-12-80 5 DISCHARG 5 SPARTINA 15DCS 28 5 SUNSET A	o E - Thernal T 17.72
TINE	AIR TEMP Deg C	Corrd Ps/resp GC/h2/h	silar Keal /H2/H		TIME	AIR TEHP Deg C	CORRD Ps/resp gc/n2/h	solar Kcal /f12/h
Q.89	27.0	-0.231	٥.		0.16	26.5	-0.199	¢.
1.87	28.0	-0.125	Ø.		<u>1.19</u>	27.4	-0.153	¢.
2.88	28.0	-0.182	۵.		2.14	28.0	-\$.108	Ŷ.
3, 92	24.0	-0.176	Ŷ.		3.14	28.0	-0.190	٥.
4.96	21.0	-0.209	\$.		4.17	23.0	-0.285	۵.
6.00	20.0	-0.219	₽.		5.21	20.5	-0.205	٥.
7.05	22.0	-0.216	Q .		6.25	20.0	-0.195	Φ.
8.09	26.0	-0.136	18.		7.29	23.5	~0.155	¢.
9.59	29.0	0.251	147.		8.80	27.5	-0.002	76.
10.65	31.5	¢.465	258.		9.84	29.0	Ø.294	176.
11.69	32.5	¢.448	323.		10.88	31.0	0.487	273.
12.71	32.¢	¢.478	364.		11.93	32.¢	¢.547	340.
13.78	32.0	0.577	387.		12.97	32.¢	0.659	375.
14.76	32.¢	¢.548	381.		14,04	<u>32</u> .0	0.848	387.
15.83	30.5	85E.0	₽ø.		15.45	32.¢	0.537	375.
16.91	\$.\$E	99.990	276.		16.09	\$.\$E	0 .484	328.
20.74	26.0	-0.136	٥.		17.16	0.¢E	0.221	258.
21.81	26.0	-0.299	٥.		21.03	26.0	-0.136	٥.
22.85	26.0	-0.329	٥.		22.07	26.9	-¢,200	Φ.
23.90	26.5	-0.270	٥.		22.59	26.0	-0.208	¢.
99.99	9.9E	99.999	276.		q q qq	4.¢E	Q.221	258.

MARSH COMMUNITY RETABOLISH DATA

MARSH COMMUNITY METABOLISM DATA

SEA SOM Collect Area - Dominan Chamber Sun Ross	IDN DATE TREATHEN T SPECIE CODE AT 7.4	FALL 1980 10-12-80 T DISCHARGE JUNCUS 15DCJ 36 5 SUHSET AT	- THERMAL 17.72	SEASUN COLLECT AREA - Dumintan Chanber Sunruse	IDH DATE TREATMENT T SPECIES Cude AT 7.45	FALL 1980 10-12-80 DISCHARGE JUNCUS 15DCJ 4B SUNSET AT	- THERMAL 17.72
TINE	AIR TEMP DES C	CDRRD Ps/resp gc/n2/h	solar Kcal /M2/H	TIRE	AIR Temp F Deg C (CORRD PS/RESP C/H2/H	Solar Kcal /n2/h
9.39	26.5	-0.213	Ŷ.	¢. 68	26.5	-9.359	٥.
1.41	27.0	-0.203	¢.	1.61	27.0	-0.357	٥.
2.40	28.0	-0.140	Ð.	2.63	28.0	-0.210	٥.
3.39	28.0	E00.0-	٥.	3.65	26.0	-0.229	٥.
4,43	22.5	-0.159	٥.	4.69	22.0	-0.297	۹.
5.47	19.0	-0.226	φ.	5.73	20.0	-0.416	٥.
ó.51	<u>2</u> 0.0	-0.209	Ŷ.	6.77	20.0	-0.266	٥.
7.55	24.0	-0.189	٥.	7.81	24.5	-0.213	б.
9.06	28.0	Q.372	100.	۹.32	28.5	0.185	123.
10.10	28.5	0.473	205.	10.39	29.5	0.145	235.
11.17	29.4	¢.451	293.	11.41	32.5	¢.089	305.
12.21	32.0	¢.3¢2	Эк.	12.45	32.¢	-0.002	352.
13.27	∃2.¢	\$ 8 5.9	375.	13.51	32.¢	0.071	387.
14.27	32.¢	0.386	387.	14.56	\$2.\$	¢.128	352.
15.31	91.¢	Ø.367	364.	15.58	30.0E	Q.192	293.
16.38	90.0E	¢.493	311.	16.61	0.¢E	99.990	293.
17.42	4.¢E	Ø.326	235.	21.55	24.4	-0.261	٥.
21.29	26.0	-0.204	¢.	22.59	24.\$	-0.245	Ø.
22.33	26.0	-0.235	\$.	23.64	26.5	-0.228	٥.
23.35	26.5	-0.219	٥.	99.99	0.0E	99.990	29 3.
99.99	0.0E	0.326	235.				

C. 112.115

onofficiels VILE TARE:

CASTER

MARY ME DESIGN

1

APPENDIX E

PERCENT SATURATION OF DISSOLVED OXYGEN AT POINT OF DISCHARGE, INTAKE SCREENS, AND OUTER BAY

PERCENT SATURATION OF DISSOLVED OXYGEN AT POINT OF DISCHARGE, INTAKE SCREENS, AND OUTER BAY

The solubility of oxygen in seawater decreases proportionally with increasing temperature and/or salinity. Table II-72 lists the percent saturation of oxygen in water relative to air for the outer bay, point of discharge, and intake screens stations. Percent saturations generally follow the pattern of elevated saturations at dusk due to daily production, with the lowest saturations at dawn due to night respiration. When large changes in temperature and/or salinity occur between any two successive sampling times, this pattern can be obscured. Most dawn-dusk pairs for all three stations varied by less than 10% saturation.

	01	iter Bay	Discl	narge Canal	Intake Screens		
Date	Time	Mean % Saturation	Time	Mean % Saturation	Time	Mean % Saturation	
1/04/80	0732	100.8	0700	115.1	0832	98.6	
1/04/80	1735	101.5	1800	112.0	1654	99.3	
1/05/80	0800	98.4	0700	111.1	0654	99.7	
1/05/80	1709	103.6	1755	104.4	1815	100.8	
1/06/80	0740	98.1	0700	109.9	0650	97.7	
1/18/80	0712	105.3	0643	117.4	0809	106.7	
1/18/80	1655	110.8	1627	121.5	1732	108.8	
1/19/80	0720	105.4	0650	119.1	0808	107.7	
1/19/80	1717	112.3	1645	118.9	1751	110.7	
1/20/80	0715	102.0	0648	115.3	0756	103.1	
2/01/80	0740	99.6	0700	112.4	0840	97.3	
2/01/80	1753	107.4	1730	114.4	1828	98.0	
2/02/80	0740	98.4	0837	115.9	0700	99.6	
2/02/80	1730	107.3	1630	115.7	1814	101.1	
2/03/80	0735	103.1	0823	117.0	0647	101.9	
2/22/80	0725	103.8	0704	111.5	0807	105.7	
2/22/80	1735	110.8	1700	119.2	1815	110.1	
2/23/80	0705	106.1	0635	111.9	0825	105.2	
2/23/80	1725	110.0	1657	117.7	1803	112.2	
2/24/80	0710	104.9	0635	110.7	0806	100.0	
3/07/80	1729	116.8	1649	117.6	1758	120.1	
3/08/80	0657	109.9	0627	110.4	0739	113.3	
3/08/80	1702	114.1	1753	119.4	1643	117.8	
3/09/80	0710	106.8	0630	105.3	0804	105.3	
3/09/80	1711	111.5	1629	111.5	1745	109.1	
3/21/80	0645	97.4	0615	99.1	0800	98.7	
3/21/80	*	*	1700	108.0	1820	101.8	
3/22/80	0633	97.5	0609	87.9	0728	92.6	
3/22/80	1723	112.1	1647	101.17	1755	101.9	
3/23/80	0636	99.5	0614	94.1	0720	97.5	
4/04/80	0655	100.4	0600	95.01	0722	109.5	
4/04/80	1732	107.9	1655	105.6	1702	113.2	
4/05/80	0626	99.1	0548	97.4	0543	99.7	
4/05/80	1800	115.5	1715	104.8	1715	112.0	
4/06/80	0703	101.9	0533	93.4	0655	101.9	

Table II-72. Mean percent saturation of water with dissolved oxygen at point of discharge, intake screens, and outer bay during dawn-dusk-dawn sampling. The mean percent is based on three water samples.

Table II-72 (cont'd).

	0	Outer Bay		Discharge Canal		Intake Screens	
Date	Time	Mean % Saturation	Time	Mean % Saturation	Time	Mean % Saturation	
4/18/80	0558	100.0	0525	100.7	0643	102.8	
4/18/80	1823	110.9	1850	110.3	1747	110.0	
4/19/80	0558	100.5	0530	99.5	0643	101.1	
4/19/80	1809	108.5	1738	111.1	1845	106.3	
4/20/80	0610	99.4	0528	99.8	0658	96.2	
5/02/80	1800	110.3	1734	109.9	1840	102.9	
5/03/80	0643	100.3	0615	98.0	0728	95.6	
5/03/80	1842	108.8	1804	110.2	1923	104.5	
5/04/80	0645	98.6	0619	95.1	0729	98.4	
5/04/80	1853	110.3	1940	104.5	1748	106.0	
5/16/80	0643	95.1	0612	91.3	0734	100.3	
5/16/80	1819	114.1	1751	101.9	1856	117.2	
5/17/80	0640	94.8	0607	86.82	0736	98.9	
5/17/80	1830	111.9	1759	97.3	1910	106.6	
5/18/80	0637	94.2	0610	91.3	0716	95.5	
5/30/80	1754	103.4	1727	97.8	1830	111.2	
5/31/80	0634	91.0	0608	80.1	0725	98.1	
5/31/80	1811	104.7	1841	95.3	1738	103.4	
6/01/80	0641	92.8	0614	86.5	0721	94.2	
6/01/80	1820	109.2	1902	96.2	1736	108.3	
6/16/80	1848	113.0	1815	109.9	1930	115.6	
6/17/80	0700	96.3	0603	92.9	0752	100.1	
6/17/80	1915	111.3	1847	105.5	1950	116.9	
6/18/80	0642	96.6	0615	93.0	0727	100.7	
6/18/80	1845	108.0	1920	106.7	1920	115.8	
7/17/80	0731	93.2	0715	88.0	0807	96.8	
7/17/80	1853	108.4	1926	102.2	1816	110.6	
7/18/80	0706	95.1	0635	90.9	0807	95.0	
7/18/80	1838	110.4	1819	104.4	1855	110.6	
7/19/80	0732	92.7	0805	87.9	0635	92.0	
8/02/80	1857	109.8	1829	100.0	1929	111.7	
8/03/80	0714	94.3	0747	88.7	0620	95.9	
8/03/80	1905	111.9	1928	97.2	1835	109.0	
8/04/80	0646	98.0	0715	89.1	0616	93.4	
8/04/80	1900	117.3	1834	95.3	1911	102.0	

Table II-72 (cont'd).

	0	Outer Bay		harge Canal	Intake Screens		
Date	Time	Mean % Saturation	Time	Mean % Saturation	Time	Mean % Saturation	
8/15/80	1843	122.0	1809	109.7	1923	113.1	
8/16/80	0705	100.7	0732	101.5	0630	103.8	
8/16/80	1930	116.8	1815	116.5	1910	114.0	
8/17/80	0700	104.6	0633	101.6	0740	102.9	
8/17/80	1902	117.9	1930	114.0	1847	110.2	
8/29/80	0712	93.0	0645	99.9	0748	97.0	
8/29/80	1740	114.9	1713	104.9	1811	117.9	
8/30/80	0721	92.2	0753	98.9	0645	93.0	
8/30/80	1744	112.8	1817	108.2	1715	113.6	
9/01/80	0711	96.2	0644	99.0	0726	93.9	
9/12/80	0721	93.6	0651	97.6	0753	97.7	
9/12/80	1737	107.4	1707	107.9	1822	107.2	
9/13/80	0737	94.6	0816	102.8	0700	96.4	
9/13/80	1831	110.1	1656	111.9	1815	108.3	
9/14/80	0712	93.5	0651	102.8	0755	97.6	
9/26/80	0700	102.7	0647	111.8	0830	104.5	
9/26/80	1759	125.4	1720	120.8	1815	113.1	
9/27/80	0746	101.8	0655	112.0	0810	103.4	
9/27/80	1738	124.3	1755	118.1	1755	116.6	
9/28/80	0715	98.0	0648	110.8	0620	98.0	
10/14/80	1820	109.65	1755	114.32	1855	103.26	
10/15/80	0713	96.80	0650	106.41	0758	94.28	
10/15/80	1746	110.83	1709	112.90	1825	105.01	
10/16/80	0812	95.99	0900	104.29	0715	94.52	
10/16/80	1800	112.19	1728	114.97	1838	105.93	
10/31/80	0725	98.98	0650	110.26	0810	100.13	
10/31/80	1650	109.32	1625	114.18	1735	105.91	
11/01/80	0700	95.69	0630	109.90	0744	96.72	
11/01/80	1715	111.92	1750	106.81	1625	108.04	
11/02/80	0700	99.67	0634	110.41	0745	97.16	
11/13/80	1630	110.11	1600	112.35	1615	102.75	
11/14/80	0645	103.13	0612	110.31	0735	101.33	
11/14/80	1710	112.31	1740	112.89	1608	109.91	
11/15/80	0708	103.23	0640	104.68	0802	101.23	
11/15/80	1651	110.18	1620	112.68	1740	108.59	

Table II-72 (cont'd).

	Outer Bay		Disc	harge Canal	Intake Screens		
Date	Time	Mean % Saturation	Time	Mean % Saturation	Time	Mean % Saturation	
11/28/80	1625	100.36	1555	111.67	1700	97.38	
11/29/80	0654	98.79	0621	109.72	0731	96.19	
11/29/80	1645	104.15	1605	112.32	1718	100.35	
11/30/80	0726	100.34	0801	109.73	0645	97.08	
11/30/80	1705	108.95	1745	111.05	1604	98.84	
12/15/80	1643	109.66	1610	117.00	1715	102.70	
12/16/80	0715	101.86	0645	110.67	0802	99.33	
12/16/80	1710	100.34	1744	111.62	1625	101.10	
12/17/80	0720	98.85	0640	108.57	0825	98.25	
12/17/80	1600	103.15	1735	106.05	1615	100.58	