FOREST COVER, IMPERVIOUS-SURFACE AREA, AND THE MITIGATION OF STORMWATER IMPACTS

Derek B. Booth, David Hartley, and Rhet Jackson

ABSTRACT: For 20 years, King County, Washington, has implemented progressively more demanding structural and nonstructural strategies in an attempt to protect aquatic resources and declining salmon populations from the cumulative effects of urbanization. This history holds lessons for planners, engineers, and resource managers throughout other urbanizing regions. Detention ponds, even with increasingly nutritive designs, have still proven inadequate to prevent channel erosion. Coastal structural retrofits of urbanized watersheds can mitigate certain problems, such as flooding or erosion, but cannot restore the predevelopment flow regime or habitat conditions. Widespread conversion of forest to pasture or grain in rural areas, generally unrecorded by most jurisdictions, degrades aquatic systems even when watershed imperviousness remains low. Preservation of aquatic resources in developing areas will require integrated mitigation, which must include impervious-surface limits, forest-resilient policies, stormwater detention, riparian buffer maintenance, and protection of wetlands and unstable slopes. New management goals are needed for those watersheds whose existing development precludes significant ecosystem recovery; the same goals cannot be achieved in both developed and undeveloped watersheds. (KEY TERMS: urbanization; stormwater; BMP; land use planning; watershed management; urban water management.)

INTRODUCTION

For decades, watershed urbanization has been known to harm aquatic systems. Although the problem has been long articulated, solutions have been elusive because of the complexity of the problem, the evolution of still-imperfect analytical tools, and socio-economic forces with different and often incompatible interests. King County, Washington, has been a recognized leader in the effort to analyze and to reduce the consequences of urban development, but even in this jurisdiction the path toward aquatic resource protection has been marked by well-intentioned but ultimately mistaken approaches, compromises with other agency goals that thwart complete success, and imperfect implementation of adopted policies and plans. This experience demonstrates the difficulty of meeting urban and suburban water-quality and aquatic-resource protection goals in the face of competing social priorities and variable political resolve on environmental issues that require sustained, long-term strategies to achieve progress.

King County provides a useful case study for resource managers in urbanizing regions across the country. It covers about 5,600 square kilometers with a population of 1.7 million people, the twelfth most populous county in the United States. Its western boundary is Puget Sound and its eastern boundary is the crest of the Cascade Range. It contains all or most of three major river basins, two large natural lakes, and numerous small rivers and streams (Figure 1). The streams and lakes support all species of anadromous Pacific salmon and resident trout. Land uses include urban, industrial, suburban, agriculture, rural, commercial timber production, and National Forest. Cities include Seattle, Bellevue, Renton, and Redmond; population growth has been explosive over the last 20 years.

Recent Endangered Species Act (ESA) listings of Puget Sound chinook and bull trout, and the potential for more salmonid listings, have brought new scrutiny to all aspects of watershed protection and urbanization-mitigation efforts in King County and


*Respectively, Research Associate Professor, Center for Urban Water Resources Management, Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, 98195-2700; Senior Hydrologist, King County Water and Land Resources Division, 391 South Jackson Street, Suite 600, Seattle, Washington 98104-3852; and Associate Professor, Daniel B. Warrin School of Forest Resources, University of Georgia, Athens, Georgia 30602-2152 or dcb007@u.washington.edu.

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION 835 JAWRA
EMPIRICAL RELATIONSHIPS BETWEEN WATERSHED CONDITIONS AND STREAM CONDITIONS

Correlations between watershed development and aquatic-system conditions have been investigated for over two decades. Klein (1979) published the first such study, where he reported a rapid decline in biotic diversity where watershed imperviousness exceeded 10 percent. Steedman (1988) believed that his data showed the consequences of both impervious cover and forest cover on in-stream biological conditions. Later studies, mainly unpublished but covering a large number of methods and researchers, were compiled by Schueler (1994). Since that time, additional work on this subject has been done by a variety of Pacific Northwest researchers, including May (1996), Booth and Jackson (1997), and Morley (2000) (Figures 2, 4, and 5).

Figure 2. One year's measured discharges for a suburban (Klahanie) and an undeveloped (Narrows Hill) watershed, normalized by basin area (data from Burgis et al., 1986).

Figure 3. Observed fish habitat quality as a function of effective impervious area in the contributing watershed, based on more than 80 individually inventoried channel segments in south King County (from Booth and Jackson, 1997; data from King County, 1990a, 1990b). "EXCELLENT" reaches show little to no habitat degradation; "GOOD" reaches show some damage to habitat but still maintain good biological function; and "POOR" reaches both maintain aquatic habitat that has been clearly and extensively damaged, typically from bank erosion, channel incision, and sedimentation.

Figure 4. Relationship between riparian vegetation and instream conditions, using the same sites and criteria as for Figure 2. A relatively intact riparian corridor is clearly necessary, but not sufficient, for high quality habitats.

Figure 5. Compilation of biological data on Puget Lowland watersheds, reported by Elsen (1990), May (1990), and Morley (2000). The pattern of progressive decline with increasing imperviousness in the upstream watershed is evident only in the upper bound of the data; significant degradation can occur at any level of human disturbance (at least as measured by impervious cover).
These data have several overall implications:

- "Imperviousness," although an imperfect measure of human influence, is closely associated with stream-system decline. A wide range of stream conditions, however, can be associated with any given level of imperviousness, particularly at lower levels of development.

- "Thresholds of effect," articulated in some of the earlier literature (e.g., Klein, 1978; Booth and Reinhart, 1993) exist largely as a function of measurement (im)precision, not an intrinsic characteristic of the system being measured. Coastal Management must require that large changes occur before they can be detected, but lower levels of development may still have consequences that can be revealed by other, more sensitive methods. In particular, biological indicators (e.g., Figure 5) demonstrate a continuum of effects, not a threshold response, resulting from human disturbance.

MITIGATION OF NEW DEVELOPMENT: THE KING COUNTY, WASHINGTON, EXPERIENCE

Hydrologic Mitigation Through Structural Means

As a consequence of the urban-induced runoff changes that cause flooding, erosion, and habitat damage, jurisdictions have long required some degree of stormwater mitigation for new developments. The most commonly used approach has been the use of detention ponds, which are intended to capture and detain stormwater runoff from developed areas. These ponds can be designed to either of two levels of performance, depending on the desired balance between achieving downstream protection and the cost of providing that protection. A peak standard, the classic and least costly goal of detention facilities, seeks to maintain post-development peak discharges at their predesign levels. Even if this goal is successfully achieved the aggregated effects of local ponds may increase because the overall volume of runoff is greater.

In contrast, a duration standard seeks to maintain the post-development duration of a wide range of peak discharges at predesign levels. Yet unless runoff is infiltrated, the total volume of runoff must still increase in the post-development condition. Thus durations cannot be matched for all discharges because this "excess" water must also be released. Duration standards seek to avoid potential disruption to the downstream channels by choosing a "threshold discharge," below which sediment transport in the receiving channel is not proven difficult, and as post-development flow durations can be increased without concern. This choice can be made by site-specific, but rather expensive, analysis based on stream hydrologic response models (Batterson and Montgomery, 1997) or can be applied as a "generic" standard based on predesign discharges.

The first effect sought to reduce peak flows, reflecting the traditional focus on flood reduction. Wall over 100 years ago, the fundamental predicting equation of runoff used in these early mitigation efforts (Rouse, 1880) and in the Rational Runoff Formula (1851). The Rational Runoff Formula related the runoff rate to the simple product of the rate of rainfall, the basin area, and the runoff coefficient, a number equal to the fraction of the rain falling on a basin that presumably contributes to the flood peak. This formula was used by King County in the Pacific Northwest region's first surface-water design manual (King County, 1979). Unfortunately, it tended to overestimate predesign flows, which led to the construction of greatly oversized detention ponds that had little or no benefit in preventing downstream flooding (Booth and Jackson, 1997). Ponds designed with the Rational method had such high release rates that they rarely backed up water during storms.

The subsequent design standard (King County, 1990b) substituted the Soil Conservation Service's (SCS) curve-number methodology for the Rational equation. The SCS model is more standard, and costly, change on several fronts: (1) it nominally allows for closer matching of watershed conditions by the modeling; (2) it generally yielded a requirement for a larger detention pond; and (3) it necessitated significant additional training in hydrologic-modeling skills for local engineers doing drainage-design work. Although it was an improvement over the Rational method, the SCS method still contained the fundamental flaws that resulted in detention ponds that did not meet desired performance criteria.

In this method, runoff from individual 24-hour design storms is routed, and the area of stream channels and ponds were assumed to be empty at the beginning of a storm. Yet this is rarely the case during stormy periods, so we have been part of Basin Plan-recommended detention standards in King County since the early 1980s (and incorporated into more recent updates (1996) of the design manual). Yet scientists have dramatically increased our understanding of hydrology also commonly overestimated predesign flows, a tendency sometimes exacerbated by design engineers who manipulated the time of concentration and downstream size of the pond on their client's behalf. Furthermore, the SCS methodology was still a "peak standard" that ignored any problems associated with increased flow durations. Continuous flow analysis revealed that the ponds designed with the SCS method would not achieve the stated protection goals (Barker et al., 1991). Although continuous flow developments and their engineers of these problems has proven difficult, the county's 1998 version of the Design Manual did incorporate a regionally calibrated continuous flow model for design of stormwater detention facilities (King Coun-
yty, 1998; Jackson et al., 2001).

The practice of seeking discharge control for new developments was introduced through King County's Basin Plans of the late 1980s. The goal of this standard is to match post- and predesign flow durations for all discharges above a chosen threshold. Hydrologic analysis using a more advanced (albeit still imperfect) hydraulic model, HSPF (Hydrologic Simulation Program-Fortran) (Bicknell et al., 1997), could predict the detention needed to achieve this goal (Jackson et al., 2001).

From the outset, this approach has been controversial for several reasons:

1. The required ponds are larger, often dramatically so, than required by previous design methods.

2. The method requires a threshold discharge, below which durations will increase dramatically, but how to choose that discharge is not immediately obvious or without dispute.

3. The analytic tool (HSPF) used to establish the standard is not as rigorous as the Rational or SCS method, and so appeared less scientifically justifiable to many practitioners. For example, as part of the Bear Creek Basin Plan (King County, 1990d) a similar approach that involved an intentional "multi-pond" application of the SCS method was proposed to achieve the same objective without requiring the ability to run HSPF.

4. Finally, initially, no ponds were actually constructed under this standard, and so empirical evidence for their effectiveness (or lack thereof) is sparse.

Despite these shortcomings, these standards reflected the best understanding of hydrologic conditions in King County and so have been part of Basin Plan-recommended detention standards in King County since the early 1980s (and incorporated into more recent updates (1996) of the design manual). Yet scientists have dramatically increased our understanding of hydrology also commonly overestimated predesign flows, a tendency sometimes exacerbated by design engineers who manipulated the time of concentration and downstream size of the pond on their client's behalf. Furthermore, the SCS methodology was still a "peak standard" that ignored any problems associated with increased flow durations. Continuous flow analysis revealed that the ponds designed with the SCS method would not achieve the stated protection goals (Barker et al., 1991). Although continuous flow developments and their engineers of these problems has proven difficult, the county's 1998 version of the Design Manual did incorporate a regionally calibrated continuous flow model for design of stormwater detention facilities (King Coun-
yty, 1998; Jackson et al., 2001).

Point Discharge. These analyses ignore the consequences of point discharges that originate at roadsides or on properties. Field examples, however, demonstrate that the larger portion of point discharges can include locally severe erosion and disruption of riparian vegetation and instream habitat (e.g., Booth, 1990).

Ground Water. Any analysis of flow durations will not address changes to ground water recharge or discharge, because no constructed detention ponds, even the largest designed under this standard, can delay wintertime rainfall sufficiently for it to become summertime runoff. Yet exactly this magnitude of delay does occur under predesign conditions, because far more of the precipitation is stored as ground water.

Individual Storm Hydrographs. The flow-duration design, by definition, assures that the fractional time of a given discharge's exceedance remains unchanged for the interval of concern (e.g., about 50 years, in the case of King County), but there is no attempt (or ability) to construct detention ponds that maintain durations for specific storm events or even an entire storm complex. Thus the aggregate flow-duration spectrum may be unchanged, but the timing and brevity of any single storm hydrograph may be quite different from the undisturbed condition.

Des Moines Creek, a small urban system, demonstrates these difficulties in accomplishing the hydrologic restoration in an urban stream. Since the 1940s' widespread conversion of forests and pastures has occurred to accommodate Seattle-Tacoma International Airport and other commercial and residential uses. Within the Creek's "watershed, total impervi-
os area was raised approximately 50 percent, wet-
ter areas were flooded, some of the stream headwaters were piped, and storm runoff to the remaining natu-
ral drainage system was discharged with minimal detention. As a result, increased magnitude, frequen-
cy, and duration of peak flows raised flow velocities, devastation of the urban shoreline, eroded spawning gravel, degraded fish habitat, and caused flooding of park facilities near the mouth of the stream. Addition-
ally, no water base flows and water quality declined in the Creek.

By the 1990s, the public and local government resolved to develop and implement a basin plan to
solve these problems and restore the creek. However, the challenges faced by the technical and policy teams were formidable (Des Moines Creek Basin Committee, 1997). Any solution to existing problems also needed to accommodate additional future development within the watershed that would raise total impervious area from approximately 50 percent to 65 percent of the total drainage area and to have a cost acceptable to the participating jurisdictions.

Hydrologic modeling was used to evaluate feasible combinations of on-site detention ponds, regional flow bypasses, and regional detention ponds to reduce storm-flow energy in the creek. For $6 million, covering a range of feasible options, very large reductions in flows and flow energy compared to 1990s conditions could be achieved. Yet none of these options could restore storm flows to pristine conditions. The preferred alternative combined peak control with on-site detention ponds, regional detention, and a preexisting pipeline to bypass peak stormwater flows. This alternative provides dramatic flow-duration improvement over current conditions (Figure 6a), but daily flows in the stream do not even begin to approximate pristine conditions, despite a capital cost of nearly $65,000 per watershed hectare (almost $2,000/acre) (Figure 6b).

Figure 6a. HSPF modeled flow-duration curves for Des Moines Creek: current flows, development (i.e., forested), and those under the anticipated future (mitigated) alternative. Note that although the flow-duration curves suggest that the future alternative is about midway between current and development conditions, the future hydrograph shows flashy discharge and low base flows much more like current (urban) conditions than those of development time.

Hydrologic Restoration Through Watershed Planning

Realizing that on-site drainage controls alone were insufficient to achieve the goals of either stormwater management or resource protection, King County initiated an interdisciplinary watershed planning program in the mid-1980s, with the goal of solving and preventing flooding, water-quality, and habitat problems within the rapidly-urbanizing western part of the county. This "basin planning process" involved a two-step approach.

1. A detailed assessment of basin conditions that included inventories of point and nonpoint pollution sources, characterization of channel habitat and fish communities, mapping existing and anticipated land uses, identifying and characterizing flooding and channel erosion problems, and modeling stream flows under various development scenarios using HSPF.

2. Development of solutions that combined constructed projects, drainage and zoning regulations, and public education programs.

One finding of the early plans was that aquatic resources had been degraded by low-density rural development (e.g., one dwelling unit per five acres) (King County, 1990a, 1990b). Although this density of development generally did not create much impermeability, the amount of forest clearing to create large lawns, pastures, or hobby farms could easily reach 60 percent of the landscape, with significant effects on watershed flow regime. Furthermore, many rural landowners were inclined to "manage" the streams on their property. This might include riparian forest clearing, removing woody debris from the channel, and hardening stream banks to protect property. Rural zoning, and in and of itself, does not necessarily protect aquatic resources.

The failure of simple land-use controls (i.e., zoning) to protect aquatic resources led to the need for objective criteria for "acceptable" hydrologic performance that might protect stream channels. This "stream protection" criterion was then adopted by King County and used as the basis for the initial, predevelopment assessment of channel stability and bank erosion, which in turn had been generated from observations made in the late 1960s and early 1970s while working on the past and current basin plans (and subsequently published in Booth and Jackson, 1997) (Figure 7). These data showed that two linked thresholds had been marked. One transition of the visible channel form from "stable" to "unstable" (see also Henshaw and Booth, 2000). The other was measured dip discussed previously—where effective impervious area in the contributing watershed had exceeded 10 percent, readily observed physical degradation of the channel was ubiquitous. The other was based on hydrologic analysis of the flow regime contributing to waterbodies without excess, the same observed transition from "stable" to "unstable" channels was marked by the equality of the ten-year forested (i.e., development) discharge (Q10y) and the two-year current discharge (Q2yr). There was, and is, no theoretical basis for these particular outcomes—they are simply empirical results, remarkable in their consistency across western Washington and quite possibly recognizable in other regions of the country as well (Scheuer, 1994). Although these data compose a robust set of observations, spanning a wide variety of streams with remarkably consistent results, they also carry two limitations. First, the absence of observed instability does not, of course, guarantee an absence of any effects. The second limitation is more vexing: these data were collected on watersheds without much, if any, effective stormwater detention. Had larger and more effective ponds been in place, the observed impacts been reduced? Recent investigations by Maelst and Shaver (1999) suggest virtually no improvement in stream conditions from typical detention ponds. Even if they could be designed to be hydrologically effective, ponds cannot avoid other key problems such as disruption of storm flow patterns, increased winter storm volumes, or declining baseflows.

Notwithstanding these limitations (i.e., potentially unrecognized degradation and potentially effective detention ponds), the Issaquah Creek Basin Plan (King County, 1984) used the "thresholds" criteria for stream-channel stability suggested in Figure 7 to evaluate the likely consequences of model predictions of post-development runoff conditions. These initial assessments, presenting baseline application of the mitigation tools that were then "accepted practice" (i.e., exemption of rural-zoned developments from detention requirements, and SCS-based hydrologic design for the rest), produced results that were inconsistent with the drainage plan—to protect aquatic habitat and to resolve existing and potential future flooding problems. The empirical hydrologic model instability (Q10y · Q2yr) was exceeded pervasively throughout the watershed under all future development scenarios.
Development on highly pervious glacial outwash soils (the other, but much less common, soil type used for hydrologic modeling) failed the criterion at virtually any level of forest retention, because so little runoff occurs there naturally that almost any amount of imperviousness produces proportionally large peakflow increases. The analysis also found that in rural areas, forest clearing and conversion to suburban vegetation (mainly lawns) was far more significant in determining peakflow increases than the small increases in impervious area typical of low-density development (Figure 8). As a result, forest retention has been adopted as an alternative to detention for rural plots and short plots in the latest update to the Stormwater Design Manual.

**THE BASIS FOR REGULATING IMPERVIOUS AREA AND CLEARING**

In the realm of physical channel conditions, the data collected from field observations have consistently shown remarkably clear trends in aquatic-system degradation. In this region, approximately 10 percent effective impervious area in a watershed typically yields demonstrable degradation, some aspects of which are surely irreversible. Although early observations were not sensitive enough to show significant degradation at even lower levels of urban development, the basin plans of the early 1990s recognized that such damage was almost certainly occurring. More recently, biological data (e.g., Morley, 2000) have demonstrated the anticipated consequences at these lower levels of human disturbances.

Less empirical data have been collected on the direct correlation between forest cover and stream conditions than for watershed imperviousness and stream conditions. In general, the "evidence" has been based on the observed correlation (or change) of stream quality to the modelled hydrologic condition of 0.2 urban greater than 0.2 for, coupled with hydrologic analyses that have explored the relationship between forest cover reduction and peak-flow increases. The first such analyses, for the Issaquah Creek Basin Plan, made a variety of assumptions about "typical" watershed characteristics in that basin and found that 65 percent forest cover with 4 percent effective impervious area closely approached the condition of 0.2 urban = 0.2 for. Using more generalized model parameters and a range of effective impervious areas typical of rural areas, 65 percent forest cover is a plausible, but not by means definitive, value for meeting the presumed "stability criterion" of 0.2 urban less than 0.2 for in rural-zoned watersheds on moderately (5 to 15 percent) sloping till soils (Figure 9). The analysis summarized in Figure 9 assumes no on-site detention facilities are present because they are often technical and financially impractical in rural areas. Other animals (particularly more inclusive ones) may yield much greater hydrologic response with even lesser amounts of clearing.

**HYDROLOGICAL ANALYSIS**

Hydrological analyses suggest that maintaining forest cover is more important than limiting impervious-area percentages, at least at rural residential densities where zoning effectively limits the range of EIA between 2 and 6 percent of the gross development area. Absent clearing limitations, however, forest cover will range between 5 and about 85 percent. Consequently, even if both types of land cover control (i.e., forest retention and EIA limitation) are critical to protect stream conditions, current land-use practices suggest that mandating retention of forest cover is the more prescriptive regulatory need in rural areas. Degraded watersheds, with less than 10 percent EIA and less than 65 percent forest cover, are common ("cleared rural"); in contrast, we have found no watersheds with more than 65 percent EIA that have also retained at least 65 percent forest cover ("forested urban") (Figure 10).

**CORRELATION OF FORESTED AND IMPERVIOUS AREAS**

In the realm of physical conditions, the data collected from field observations have consistently shown remarkably clear trends in aquatic-system degradation. In this region, approximately 10 percent effective impervious area in a watershed typically yields demonstrable degradation, some aspects of which are surely irreversible. Although early observations were not sensitive enough to show significant degradation at even lower levels of urban development, the basin plans of the early 1990s recognized that such damage was almost certainly occurring. More recently, biological data (e.g., Morley, 2000) have demonstrated the anticipated consequences at these lower levels of human disturbances.

Less empirical data have been collected on the direct correlation between forest cover and stream conditions than for watershed imperviousness and stream conditions. In general, the "evidence" has been based on the observed correlation (or change) of stream quality to the modelled hydrologic condition of 0.2 urban greater than 0.2 for, coupled with hydrologic analyses that have explored the relationship between forest cover reduction and peak-flow increases. The first such analyses, for the Issaquah Creek Basin Plan, made a variety of assumptions about "typical" watershed characteristics in that basin and found that 65 percent forest cover with 4 percent effective impervious area closely approached the condition of 0.2 urban = 0.2 for. Using more generalized model parameters and a range of effective impervious areas typical of rural areas, 65 percent forest cover is a plausible, but not by means definitive, value for meeting the presumed "stability criterion" of 0.2 urban less than 0.2 for in rural-zoned watersheds on moderately (5 to 15 percent) sloping till soils (Figure 9). The analysis summarized in Figure 9 assumes no on-site detention facilities are present because they are often technical and financially impractical in rural areas. Other animals (particularly more inclusive ones) may yield much greater hydrologic response with even lesser amounts of clearing.

**CONCLUSIONS AND MANAGEMENT IMPLICATIONS**

Land development that eliminates hydrologically mature forest cover and undisturbed soil can result in significant changes to stormflow regimes and, in turn, to the physical stability of stream channels. These changes are manifested in altered stream flow patterns with higher volumes of storm flow, leading to accelerated channel erosion and habitats simplification. Even with stormwater detention ponds, seasonal and stormflow patterns are substantially different from those in mature forested and riparian development is allowed to approach these clearing and imperviousness criteria, degradation is virtually guaranteed.

The thresholds implied by these data are simply the "wrong" trend toward base drainage increase. They do not separate a condition of "no impact" from that of "some impact," instead, they separate the condition of "some impact" from that of "gross and normally impact." Hydrologically and biologically, there are no truly negligible amounts of clearing or watershed imperviousness (Morley, 2000), even though our perception of, and our tolerance for, many of the associated changes in downstream channels appear to undergo a relatively abrupt transition. Almost every increment of cleared land, and of constructed pavement, is likely to result in some degree of resource degradation of loss. The decision of how much is "acceptable" is thus as much a social decision as a hydrologic one. These conditions also emphasize the need to develop new approaches to mitigate the consequences of urbanization on streams. If urban and suburban urban watersheds cannot hydrologically mimic forested ones, no matter how large their associated detention ponds, then reducing the coverage of effective impervious area or the extent of urban development itself is an inescapable consequence of the present desire to "restore" urban watersheds. If these necessary reductions run counter to other, even more pressing social goals, most notably those to accommodate additional population growth, then our goals for aquatic-resource conservation need to be modified in urban areas. By not acknowledging the need for such tradeoffs, opportunities to discover the most rational and effective strategy for protecting the condition of once-natural aquatic systems continue to be lost.
never fully mitigate the hydrologic consequences of over development. Under a typical rural land use, the magnitude of observed forest-cover losses affects watershed flow regime as much as, or more than, associated increases in impervious areas.

The goals of stormwater detention have become progressively more ambitious as the consequences of undeveloped forest cover were recognized and understood. Even the largest detention ponds, however, are limited in their ability to mitigate all aspects of hydrologic risk. Twenty years of empirical data display a good correlation between readily observed damage to channels and modeled changes in flow regime that correspond to loss of about one-third of the forest cover in a "typical" western Washington watershed. A similar degree of observed damage also correlates to a level of watershed-impacted riparian buffer.

• clustered developments that protect half or more of the forest cover, particularly riparian corridors and around streams and wetlands to maintain intact riparian buffers;

• a maximum of 20 percent total impervious area, and substantially less effective impervious area through the widespread reinfilttration of stormwater (Konrad and Burges, 2001);

• on-site detention, realistically designed to control flow durations (not just peaks);

• riparian buffer and wetland protection zones that minimize road and utility crossings as well as overall clearing; and

• no construction on steep or unstable slopes.

Past experience suggests that each of these factors are important. However, we still lack empirical data on the response of aquatic resources to such "well-designed" developments. Therefore, these recommendations are based only on extrapolations, model results, and judgment; they are tentative at best. Where development has already occurred, these conditions clearly cannot be met and different management approaches are necessary; perhaps to severely degraded stream conditions. At lower levels of human disturbance, aquatic-system damage may range from slight to severe but is nearly everywhere recognizable with appropriate monitoring tools. Not every watershed responds equally to a given level of human disturbance, but some degree of measurable resource degradation is present even at a virtually level of urban development. The apparent "threshold" of observed stream-channel stability has no correlation to measured biological conditions; for any given watershed, additional development tends to produce additional aquatic-system degradation. However, these impairments and forest-retention percentages have proven to be attractive regulatory thresholds and are being advocated by the National Marine Fishes Service as necessary conditions for mandated protection of rural areas under the Endangered Species Act.

Development that minimizes the damage to aquatic resources cannot rely on structural BMP's, because there is no evidence that they can mitigate any but the most immediate effects of urbanization. Instead, control of watershed land-cover changes, including limits to both imperviousness and clearing, must be incorporated (see also Horner and May, 1984). We believe the following elements to maintain the possibility of effective protection:

ACKNOWLEDGMENTS

We thank our many colleagues at King County Water and Land Resources Division, and its predecessors, the Surface Water Management Division, for their assistance over many years in helping us develop our collective understanding. Particular thanks go to Burke Burke for hydrologic modeling support and Robert Putnam for appreciation of the landscape scale of aquatic-resource issues. Partial funding was provided to both by King County and Land Resources Division, together with additional support through the U.S. Environmental Protection Agency Grant 802-2584-010 in the Stormwater Management Program. Special thanks to colleagues at the University of Washington at participating in the US EPA efforts, especially James Karr, Sarah Morley, Stephen Burges, Christopher Konrad, Sidd Schueman, Marii Larza, and Patricia Haslau.

LITERATURE CITED


Dehlo Creek Basin Committee, 1997. Dehlo Creek Basin Plan Seattle, King County Department of Public Works, Sur- face Water Management Division.


King County, 1994c. Hylebos Creek and Lower Puget Sound Basin Conservation Plan. Seattle, Department of Parks and Recreation, Department of Public Works, Surface Water Management Division, Seattle, Washington, 4 Sections.


King County, 1996. Issaquah Creek Current/Future Conditions and Source Identification Report. Seattle, Department of Public Works, Surface Water Management Division, Seattle, Washington, 6 Chapters.


King County, 1999a. Landslide Hazard and Detachment: A Report of Landslides in the Issaquah Creek Drainage 1994. Seattle, King County, 2-98-84.

King County, 1999b. 1995 Index Creek Drainage and Landslide Baseline Study: Final Draft Mitigation Plan. Seattle, King County, 1-98-84.

King County, 1999c. Landslides, Natural and Induced, in the Issaquah Creek Watershed. Seattle, King County, 2-98-84.


