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Abstract 

An extensive literature search was performed to collect data pertaining to uptake abilities 

and hydrologic regimes of selected wetland and aquatic plants. Uptake was determined 

by examining concentrations of metals (i.e., arsenic, cadmium, chromium, cobalt, copper, 

iron, lead, manganese, mercury, nickel and zinc) and nutrients (i.e, nitrogen and 

phosphorus) in aboveground tissue, roots and rhizomes of various wetland and aquatic 

plants identified from the literature. Areal concentrations and actual uptake rates of these 

metals and nutrients were also examined to determine uptake abilities. Data pertaining to 

the hydrologic requirements of the plants identified from the literature, specifically 

maximum water depths and duration of inundation were also collected and examined. 

Several submergent macrophytes had the highest concentrations of metals in 

aboveground tissue including Myriophyllum spp. (arsenic, cadmium, cobalt, copper, iron, 

lead, manganese and zinc), Elodea canadensis (arsenic, cobalt and iron), Hydrilla 

verticillata (cadmium and chromium), Pistia stratiotes (cadmium), Ceratophyllum 

demersum (chromium, iron and lead) and Vallisneria spiralis (chromium and lead). 

Myriophyllum spp., Elodea canadensis and Ceratophyllum demersum can all withstand 

maximum water depths >5.0 m. Of these plants, Elodea canadensis tolerated the 

greatest duration of inundation of 88-95% of the growing season. Floating plants 

including Azolla spp. (cadmium, cobalt, copper, iron, lead, manganese and nickel), 

Lemna minor (copper, iron and zinc), Spirodela polyrrhiza (chromium, iron, lead) and 

Salvinia natans (manganese) also concentrated high levels of metals in their aboveground 

tissue. Floating vegetation has no limit on the depth of water they can tolerate and can all 

withstand long durations of inundation during the growing season (>85%). Of the data 



reported for root concentrations, high levels of metals were observed for Phragmites 

australis (cadmium and zinc), Bacopa spp. (chromium and copper), Typha spp. (iron, 

manganese, nickel and zinc), Scirpus lacustris (chromium and copper), Nymphoides spp. 

(arsenic, lead and manganese) and Potamogeton spp. (lead, manganese and zinc). 

Elevated levels of metals were found in rhizome tissues of Typha spp. (copper, iron, 

manganese and zinc) and Phragmites australis (zinc). Aboveground areal uptake of 

nitrogen and phosphorus was greatest for floating-leaved emergents, specifically Nuphar 

lutea, Nymphaea alba and Nymphoides peltata. The highest uptake rates of nitrogen 

were reported for Altemanthera philoxerides, Eichhomia crassipes and Pistia stratiotes. 

Hydrocotyle spp. and Pistia stratiotes had the highest aboveground uptake rates of 

phosphorus. 



Introduction 

Constructed wetlands have received much attention due to their ability to reduce influent 

concentrations of nutrients and toxic metals. Several important processes occur in a 

wetland that contribute to reducing incoming pollutants and excessive concentrations of 

nutrients . These include nutrient cycling, absorption and assimilation by plants, 

filtration, and sedimentation (Hammer, 1997). 

Reduction of these constituents is primarily due to microbial activity (Hammer, 1997). 

Bacteria and fungi are important in treatment wetlands, as they are responsible for 

assimilation, transformation, and recycling of chemical constituents present in various 

wastewaters (Kadlec and Knight, 1996). However, plants play an important role as they 

provide a substrate for microbes and attached algae, oxygenate both the surrounding soil 

and water, as well as absorb nutrients and toxic pollutants from the wastewater (Hammer, 

1997). Numerous studies measuring wastewater treatment with and without plants have 

concluded that performance is higher when plants are present (Kadlec and Knight, 1996). 

Hydrology is the most important component of a wetland as it defines both the structure 

and the function by: 1) controlling the composition of the plant community and thereby 

the animal community; and 2) directly influencing productivity in terms of controlling 

nutrient cycling and availability, import and export of nutrients, and fixed energy supplies 

in the form of organic particulates and decomposition rates (Hammer, 1997). Therefore, 

the hydrologic regime (i.e., water depth and duration of flooding) dictates the type of 



vegetation that can survive in a particular wetland. Plant physiology is strongly 

influenced by both duration and depth of flooding because oftheir effect on soil oxygen 

concentrations, soil pH, dissolved and chelated macro- and micronutrients, and toxic 

chemical concentrations (Kadlec and Knight, 1996). The effectiveness of a constructed 

wetland can be enhanced by examining both the hydrologic regime that a plant species 

can withstand as well as the uptake abilities of that species. 

Many studies have been performed on the ability of individual plant species to uptake 

nutrients and toxic metals. Aquatic plants such as water hyacinth (Eicchomia 

crassippes) and duckweed (Lemna minor) have been especially noted for their 

effectiveness in treating polluted wastewater (Stewart et. aI., 1986; Moorehead et.al., 

1988; Chawla et. aI., 1991; Kadlec and Knight, 1996; Wahaab et. a1., 1996). However, 

there are few data that compare uptake abilities among plant species and growth habit 

(i.e., submergent, emergent, floating, etc.). The objective of this paper is to compare 

uptake abilities and hydrologic requirements of wetland plants through an extensive 

literature search. These comparisons can then provide some insight as to which 

macrophytes may be most suitable for wastewater treatment. 

Materials aod Methods 

Scientific journal articles were the primary source for the data presented in this paper. 

The majority of articles were obtained from the database of the Center for Aquatic Weeds 

at the University of Florida. Literature searches were performed for wetland plant 



nutrient and metal uptake and also for wetland plant hydrologic requirements. Specific 

information pertaining to wetland plant uptake and hydroperiods was collected when 

researching each of the articles. The data collected were as follows: 

• Constituent of interest (e.g., arsenic, cadmium, chromium, cobalt, copper, iron, lead, 

manganese, mercury, nickel, zinc, nitrogen and phosphorus) 

• Vegetation growth habit (e.g., emergent, submergent, etc.) 

• Aboveground tissue, root, and rhizome concentration 

• Sediment concentration 

• Water concentration 

• Aboveground tissue, root, and rhizome uptake rates 

• Time of year and location of the study 

• Water temperature and pH 

• Maximum water depth where plant was found 

• Duration of flooding during the growing season 

Categories used for growth habits included emergent, floating-leaved emergents, floaters, 

sedges/grasses/rushes, and submergents. Although many grasses/sedges/rushes are 

considered emergents, there are morphological differences that distinguish between the 

two categories. 

Once the information was collected, a database management system was used to store 

and retrieve the data. Data for both plant uptake and hydrologic regime were organized 



by plant genus or species, depending on which was identified in the journal article. Once 

all the data were entered, it was queried by each constituent (i.e., iron, lead, nitrogen, 

etc.) identified from the literature search. The data were then further separated and 

organized by aboveground tissue (AGT) concentration, root concentration, rhizome 

concentration, AGT uptake rates, root uptake rates, and rhizome uptake rates. Units 

reported for concentrations, uptake rates, and water depth were then converted to 

common units for each category. AGT, root, rhizome, and sediment concentrations were 

all converted to micrograms per gram (ug/g). Milligrams per liter (mg/l) were the units 

used for water concentration. In several articles, plant uptake rates were reported either 

with respect to area or time. For uptake reported with respect to area, grams per square 

meter (g/m2) were used, while grams per square meter per day (g/m2/day) were used for 

uptake rates with respect to time. Units used for water depth were meters (m). 

Once the unit conversion was completed, a simple statistical analysis (i.e., mean, standard 

deviation, minimum and maximum values) was computed for AGT concentration, root 

concentration, rhizome concentration, AGT uptake rates, root uptake rates, and rhizome 

uptake rates. Only mean values were computed for sediment concentration, water 

concentration, maximum water depth, and percent inundation. 

Results & Discussion 

Tissue, sediment and root concentrations, as well as information pertaining to hydrologic 

regime for various wetland macrophytes identified from the literature are presented in the 



following sections. The uptake ability of each plant for a particular constituent IS 

suggested by concentrations found in its aboveground, root, and rhizome tissue. 

Sediment and water concentrations are presented to see how tissue concentrations 

compare. Rooted and submerged vascular plants can take up substances via the water 

column, through submerged shoots, or through the roots from interstitial water of the 

sediment. However, the relative importance of these two pathways for metal and nutrient 

uptake is not clear, although it is accepted that both pathways may operate in the same 

plant (Coquery and Welbourn, 1994). It cannot be concluded from the comparisons 

presented in this paper whether the plant is using the substrate, water column, or both as a 

source. Since delineating the uptake mechanisms of each individual plant is beyond the 

scope of this paper, it is difficult to determine whether the substrate or water column is 

being utilized as a source based on the data. However, if a high sediment or water 

concentration correspond with a high tissue concentration, it is probable that the plant is 

utilizing one or both of these as a source. 

Ranges of maximum water depths that wetland plant species can tolerate are presented 

along with AGT, sediment and water concentration data. Average flooding durations, 

represented as percent of the growing season are presented in Table 1. The values 

presented were obtained by averaging data found from the literature search. 



Plant Growtb Minimun Maximun 
Habit Flooding Flooding 

Duration Duration 
(% of Growing (% of Growing 

Season) Season) 

Alternanthera spp. emergent 85 NA 

Eichornia spp. emergent 90 NA 

Glyceria spp. emergent 50 NA 

Hydrocotyle spp. emergent 62.5 63 
Panicum spp. emergent 25 NA 

Pontederia spp. emergent 63 85 
Typha spp. emergent 52.5 85 
Azolla sp. floating 85 NA 

Lemnaspp. floating 88 95 

Salvinia spp. floating 85 NA 

Spirodela spp. floating 88 95 
Nupharspp. floating-leaved 75 95 
Nympbaea spp. floating-leaved 88 95 
Nymphoides spp. floating-leaved 90 NA 

Carex spp. sedge/grass/rush 56.5 75 

Juncos spp. sedge/grass/rush 63 75 

Phragmites spp. sedge/grass/rush 57 85 
Scirpus spp. sedge/grass/rush 87.5 NA 

Ceratophyllum demersum submergent 51 NA 

Egeriaspp. submergen! 95 NA 

Elodea spp. submergent 88 95 
Fontinalis spp. submergen! 90 NA 

Hydrilla spp. submergen! 95 NA 

Pistia stratiotes submergent 85 NA 

Potarnogeton spp. submergent 63 95 
Vallisneria spp. submergent 88 95 
NA - Not A vatiable 
*Flooding durations reported are average values 

Table I . Average flooding duration values for the growing season. 



Arsenic 

Elodea canadensis and Myriophyullum verticil/atum, both submergents, concentrated the 

highest average levels of arsenic (228 and 340 ug/g, respectively) in their aboveground 

tissue which corresponded closely with sediment concentrations (Figure 1), but did not 

appear to have a positive relationship with water concentrations (Figure 2). 
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Figure 1. Arsenic concentrations in aboveground tissue and sediment. 
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Figure 2. Arsenic concentrations in aboveground tissue and water. 

--

'" 

I 
~ g: 
~ 

./ 

The high sediment and AGT concentrations suggest that E. canadensis and M verticillata 

may be taking up arsenic from the substrate. A similar trend was also observed between 

average AGT and sediment concentrations for Nymphaea odorata. a floating-leaved 

emergent, and Pontederia cordata, an emergent, but at lower concentrations. Overall, it 



appears that both emergents and submergents have the greater ability to uptake arsenic. 

Nymphoides peltata had the highest reported root tissue concentration (20 uglg), 

however, there were no data available for substrate concentrations for this species (Figure 

3) 
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Figure 3. Arsenic concentrations in root tissue. 
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Ratios of AGT concentration to sediment concentration for both E. canadensis and M 

verticil/ata were <l.0, whereas ratios of AGT concentration to water concentration were 

greatest for these species. This suggests that sediment concentrations and AGT 

concentrations are fairly close and that both species may rely on the substrate as a source 

for arsenic (Figure 4). E. canadensis and M verticil/ata can also withstand the greatest 

maximum water depths reported of 6.5 and 5.0 m, respectively. AGT concentrations 

were at least two orders of magnitude greater than water concentration for all plants, 

suggesting that these plants are most likely not taking up arsenic from the water column 

(Figure 5) 
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Cadmium 

The highest average AGT concentrations of cadmium were found in Myriophyllum spp. 

(625 ug/g), Hydrilla verticillata (350 ug/g), Pistia stratiotes (125 ug/g), all submergents, 

and Azolla pinnata (259 ug/g), a floater (Figure 6). AGT concentrations were greater 

than sediment concentrations in all cases, implying that these plants may only be 

absorbing small amounts of cadmium from the substrate. 
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Figure 6. Cadmium concentrations in aboveground tissue and sediment. 

Other plants that appear to have an affinity for cadmium include A/ternanthera spp., 

Eichhomia crassipes, and Spirode/a polyrrhiza. AGT concentrations were also several 

orders of magnitude greater than water concentrations for all plants (Figure 7), suggesting 

that these plants may be taking up only small amounts of cadmium, if any, from the water 

column. 
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Figure 7. Cadmium concentrations in aboveground tissue and water. 
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Phragmites australis had the highest average root tissue concentration (0.61 uglg) which 

showed a close relationship to sediment concentration and was also greater than AGT 

concentration (0.112 uglg) (Figure 8). 
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Average rhizome concentrations (0.16 ug/g) of P. australis were fairly close to AGT 

concentration but less than root concentration (Figure 9). 

0.6 -- - - --- - - 0.7 

~ ~ 0.5 +----- ---------ft-"'------------ --1' 0.6 .. ~ 
~ 5' 0.5 e· ~ lj - 0.4 +-------------------------------1 -
~ § 0.4 ] .~§ '!: iii 0.3 +------------ - - --------- --- -1 .. -
- :; T 0.3 8, j; 
~ ii 0.2 +------ ----------t---------------{ • c 
~ g , 0.2 ~ ~ 
.. <'5 0.1 • 0 .1 ~ 8 

o 0 
o Average Rhizome CODceatntion 
o Average Sediment Conccntration 

• Vertical dashed line defioes range 
of tissue con~ntrltions teported . 
•• Solid line represents standard 
deviation from the mean tissue 
concentratioQ. 

Phrllgmiles lIustralis 

'------y--J 
Sedge/GrassIRush 
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In all cases, the ratio of AGT to sediment concentration displayed a closer relationship 

than AGT to water concentration (Figures 10 & 11). This provides more evidence that 
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Figure 11. Ratio of AGT concentration to water concentration for cadmium and ranges of average maximum water depths. 

the plants may be utilizing the substrate rather than the water column as a source of 

cadmium_ Ratios of AGT to both sediment and water concentration were lowest for P. 

australis, suggesting that this species does not have a high affinity for cadmium. 

Chromium 

The greatest average AGT concentrations of chromium were reported for Hydrilla 

verticillata (925 ug/g), Ceratophyllum demersum (383 ug/g), Vallisneria spiralis (311 

uglg), all submergents and Spirode/a polyrrhiza (395 ug/g), a floater (Figure 12)_ 

Sediment concentrations were not available for these species from the literature. 



However, for other plants identified from the literature, sediment concentrations were at 

least one order of magnitude greater than AGT concentrations. 
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AGT concentrations of chromium were at least two orders of magnitude greater than 

water concentrations for all plants identified from the literature (Figure 13). 
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Figure 13. Chromium concentrations in aboveground tissue and water. 
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Root tissue concentrations for both Bacopa monnieri and Scirpus lacustris (1,600 and 

739 ug/g) were several times greater than their respective AGT concentrations (171 and 

163 ug/g, respectively) (Figure 14). Substrate data was not available for these species, 

however, roots of these plants appear to be more effective in accumulating chromium 

than AGT. 

10000 

c; ., 
- -~-l 

X ~ 

'" 1000 
0 

'" ~ c • u 

.3 100 

g 
'" !I, 10 
~ 
> 

" 

X Average Root Concentration 

ll..~ 
o c 
u c 
• 0 

<Xl E 

X 

~~ 
.!:: ::::J 

<ll.ll 

L...r-' L...r-' 
Emergent SedgelGrnss/Rush 

Figure 14. Chromiwn concentrations in root tissue. 
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Ratios of average AGT concentration to sediment concentration were all < 1. 0 (Figure 15) 

for all plants identified from the literature suggesting chromium may be derived from the 

substrate rather than the water column. Ratios for E. canadensis and Myriophyllum spp. 

were closest to 1.0 suggesting these plants may utilize the substrate more effectively. 

These plants can also tolerate the greatest water depths reported of 6.5 and 5.0 m, 

respectively. AGT concentrations were at least one to two orders of magnitude greater 

than water concentrations for all plants identified from the literature (Figure 16). 
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Figure 15. Ratio of AGT concentration to sediment concentration for chromium and ranges of average maximum water depths. 
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Cobalt 

Azalia pinnata (261 ug/g) and Myriophyllum spp. (134 ug/g) had the highest average 

AGT concentrations of cobalt (Figure 17). Sediment concentrations of cobalt were 

greater than AGT concentrations for all plants identified in the literature suggesting that 

the species identified may utilize the substrate to take up cobalt. AGT concentrations for 

Pontederia cordata, Elodea canadensis, and Myriophyllum spp. were several orders of 

magnitude greater than water concentrations (Figure 18). 
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Ratio of AGT to sediment concentration was closest to 1.0 for Myriophyllum spp. which 

suggests that this plant may utilize the substrate as a source of cobalt (Figure 19). AGT 

concentrations for P. corriata, E. canadensis, and Myriophyllum spp. were all several 

orders of magnitude higher than water concentrations (Figure 20). Of these plants, E. 

canadensis, and Myriophyllum spp. have the highest tolerance of deep water as they can 

withstand maximum depths of6.5 m and 5.0 m, respectively. 
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Copper 

Lemna minor, Azalia spp., Scirpus lacustris, and Myriophyllum spp. had the greatest 

concentration of copper in AGT (11,357, 2,686, 1,369, and 997 ug/g, respectively) 

(Figure 21). Floating and submergent plants concentrated more copper in their AGT, 

whereas emergents and sedges/grasses/rushes did not. Sediment concentrations 
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Figure 21. Copper concentrations in aboveground tissue and sediment. 
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corresponded closely with AGT concentrations for emergents and submergents. AGT 

concentrations were at least one to two orders of magnitude greater than water 

concentrations (Figure 22). 
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Bacopa monnieri and Scirpus lacustris had the greatest root concentrations (3,821 and 

2,030 uglg, respectively) (Figure 23). Root tissue concentration for B. monnieri was 
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several orders of magnitude higher than sediment concentrations. Typha latifolia had a 

concentration of copper in its root tissue (71 ug/g) which was much greater than the 

concentration found in AGT (5 ug/g) and rhizome tissue (19 ug/g) of Typha spp. (Figure 

24). 

c; 
100 

~ 
§ 

~ .. 
" c: 
0 10 0 

~ 
.!:! 
~ .. 
'" ~ 
~ 

<> Average Rhizome Concentration 
o Av erage Se dimetrt Concentration 

• Verticil dashed line defines IlDge 
of tissue cQlK:entrations reported. 
.. Solid Iino represents sundard 
deviation from the mean tislue 
concentration. 

r---------------·------------------------------~ 100_ 

! 

• I +-------------------------------~O~---------+10 i 

l!I 

~ 
{ 
~ 

'-y----J 
Emergent 

Sedge/Grass/Rush 

Figure 24. Copper concentrations in rhizome tissue and sediment. 

~ 
~ .. 
~ 
~ 

Eleocharis spp., Nymphoides Spp., Panicum spp., and Myriophyllum spp. were the only 

plants that had ratios of AGT concentration to sediment concentration that were > 1. 0 

(Figure 25). The ratios for the remainder of the plants identified from the literature 

search were all <1.0. This suggests that Eleocharis spp., Nymphoides spp., Panicum spp., 

and Myriophyllum spp. may take up less copper from the substrate than other plants 

identified. The lowest ratios between AGT and water concentrations were observed for 



Nymphaea odorata and Pontederia cordata, suggesting that these species might absorb 

some copper from the water column (Figure 26). 
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Iron 

AGT concentrations of iron were greatest in floating and submergent vegetation. The 

highest average concentrations of iron in AGT were reported for Elodea canadensis 

(10,250 uglg), Ceratophyllum demersllm (5,890 uglg), Spirode/a polyrrhiza (5,585 uglg), 

Azolla spp. (4,800 uglg) and Lemna minor (4,413 uglg) (Figure 27). 
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Figure 27. Iron concentrations in aboveground tissue and sediment 
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Average AGT concentrations were greater than sediment concentrations for all species 

identified, except Lagarosiphon major. This suggests that many of the plants may be 

absorbing iron from the substrate but in small quantities. Average AGT concentrations 

for emergents, floaters, sedges/grasses/rushes, and submergents were all several orders of 

magnitude greater than water concentrations suggesting that the water column may not 

play an important role in providing iron to AGT (Figure 28). 
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Figure 28. Iron concentrations in aboveground tissue and water. 

Typha latifolia had iron concentrations in both its roots and rhizomes (28,958 and 8,634 

ug/g, respectively) that well exceeded concentrations in its AGT (47 ug/g) (Figures 29 & 

30). Sediment concentrations also corresponded closely with root and rhizome 

concentrations suggesting these parts are effectively absorbing iron from the substrate. 
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With the exception of Typha latifolia, the average AGT concentration was one to two 

orders of magnitude greater than sediment concentrations, which provides further support 

that AGT may only be concentrating small amounts of iron from the sediment (Figure 

31)_ Ratios were closest to 1_ 0 for Nymphaea odorata and Pontederia cordata suggesting 
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Lead 

Ceratophyllum demersum, Myriophyllum spp., and Vallisneria spiralis, all submergents, 

had some of the highest levels oflead concentrated in their AGT (2,499, 4,293, and 1,637 

ug/g, respectively) (Figure 33). Sediment concentrations were similar to, or slightly 
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Figure 33. Lead concentratious in aboveground tissue and sediment. 
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greater than, AGT for several emergents (e.g., Eleocharis spp., Lythrum salicaria, 

Nuphar spp., Nymphaea odorata, and Pontederia cordata). These macrophytes are most 

likely accumulating lead in their AGT directly from the sediment. Several floaters, 

including Azolla spp., Lemna minor, and Spirodela polyrrhiza, also concentrated 

relatively high levels of lead in their AGT (182, 190, and 1823 ug/g, respectively). 

Additionally, Altemanthera sessilis also concentrated a high level oflead in its AGT (622 

ug/g). Average AGT concentrations of iron were at least one order of magnitude higher 

than water concentrations for all plants identified throughout the literature (Figure 34). 
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Figure 34. Lead concentrations in aboveground lissue and water. 

Root tissues of Nymphoides peltata and Potamogeton spp., both emergents, had the 
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greatest iron concentrations reported (9.8 and 11 .5 ug/g, respectively) which was slightly 

greater than AGT concentration for these species (3.6 and 6.7 ug/g, respectively) (Figure 

35). 
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Root tissue concentration of P. australis (4.8 ug/g) exceeded both AGT (1 ug/g) and 

rhizome concentrations (2.2 ug/g) (Figure 36). 

10 

~ .=. 
c 
0 

'" ~ 
~ 
u 

.3 
~ 
2 
~ 
• 
~ 
~ 

<) Average Rhizome Concenttltion 
o Average Sediment Concentntion 

'" Vertical duhed line defines r.tllgc 
oftissne concentrations reported. 
"'>to Solid line represents standard 
deviation from the mcl1l. tissue 
concentration. 

----...,. 100 

o 10 

o 

H 
~~ "' . 
~ 

Sedge/GrasslRush 

Figure 36. Lead concentrations in rhizome tissue and sediment. 

The ratio of AGT concentration to sediment concentration was slightly> 1. 0 for 

Eleocharis spp., Nuphar luteum, Nymphoides aquatica, and Panicum sp., suggesting that 

these macrophytes are concentrating lead from the sediment (Figure 37). These plants, 

which are all emergents, can tolerate an average maximum water depth of 1.0 to 2.0 m. 

AGT is most likely not accumulating lead from the water column since AGT 

concentrations were at least two orders of magnitude greater than water concentration 

(Figure 38). 
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Figure 37. Ratio of AGT concentration to sediment concentration forlead and ranges of average maximum Wilter depths. 
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Manganese 

Salvinia natans, a floater, had the greatest AGT concentration of manganese (7,133 ug/g) 

(Figure 39). Average AGT concentrations of manganese for emergents and floating-

leaved vegetation were 1 to 2 orders of magnitude higher than both sediment and water 

concentrations (Figure 40). A similar trend was also observed for some submergents, 

including Myriophyllum heterophyllum. Lagarosiphon major and Utricularia spp. 
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In addition to having fairly high AGT concentrations, Potamogeton spp. (2,300 ug/g) and 

Typha spp. (670 ug/g) also concentrated high levels of manganese in their root tissue 

(835 and 329 ug/g, respectively) (Figure 41). No data were available for substrate 

concentrations for these plants. Nymphoides peltata also had high reported levels of 

10000 .- ..•....•............. __ ........ ............................ _-_ .............. ........... ...................•... - 1000 1> 
0 ! 

& 5 
'" 1000 X : i!- 100 c c 
0 i ~ X 
c 100 U 
3 i 
8 10 E 

;; 

~ 10 :I 
• 
~ 
l 

0. ~ .. ~ .. c 

~ 
AVt:rlge Root COnccmttllljOl1 :;- il 
Average Sediment Concentration • V'! E' 8'0. "'-= . ~ E 0-

~ !8. " . • Vertic.) dIShed line defines rmgo ;r" ~ 
oftis&ue concentntions reported. ~ ~ '--v--' II. 

.... Solid liDo represents standard 
Emergent Floating- SedgelChassIRush '--v--' de\;alion from the me.a tissue 

concentration. 1eaved Submergent 

Figure 41. Manganese concentrations in root tissue and sediment 

manganese in its roots (792 ug/g) but lower levels in its AGT (122 ug/g). The rhizome 

concentration for Typha lali/olia was 284 ug/g and was relatively close to sediment 

concentration (Figure 42). 
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Figure 42. Manganese concentrations in rhizome tissue and sediment. 



The ratio of AGT to sediment concentration for Typha spp. was very close to 1.0 which 

suggests that this plant relies on the substrate to take up manganese. It can only tolerate a 

maximum depth of 0.43 m, though (Figure 43). 
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Figure 43. Ratio of AGT concentration to sediment concentration for manganese and ranges of average maximum water depths. 

AGT concentrations for all plants identified from the literature were at least two orders of 

magnitude greater than water concentrations (Figure 44). This suggests that these plants 

may be accumulating more manganese from the substrate rather than the water column. 
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Mercury 

Very little data were available for mercury uptake. Tissue concentrations were only 

reported for Eriocaulon septangulare, an emergent species (Figure 45). AGT 

concentration (0.25 ug/g) was approximately half of the sediment concentration and two 

orders of magnitude greater than the water concentration. 
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Root concentrations were somewhat higher (0.525 uglg), but showed a close relationship 

to sediment concentration (Figure 46). Overall, E. septangulare, does not appear to 

accumulate high levels of mercury. 
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Nickel 

The largest average AGT concentrations of nickel were found in Myriophyllum spp. and 

Azolla spp. (1,473 and 204 uglg, respectively) (Figure 47). Several plants, including 
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Lythrum salicaria, Nuphar advena, Carex lacustris, and Myriophyllum sp., corresponded 

closely to sediment concentrations. AGT concentration for Nymphaea odorata 

corresponded closely to water concentration (Figure 48), but AGT concentrations for the 

remainder of the identified plants were several orders of magnitude greater than water 

concentrations. 
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Typha spp. had the greatest root tissue concentration of nickel (194 ug/g) (Figure 49) 
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which was greater than both AGT concentration (11 ug/g) and rhizome concentration (40 

ug/g) (Figure 50) for this species. Sediment concentration far exceeded tissue 

concentrations in all cases (3,138 ug/g). 
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All ratios of AGT to sediment concentrations (Figure 51) were <1.0 with the exception of 
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Myriophyllum spp., whose ratio was slightly >1.0, suggesting that this plant may be 

actively taking up nickel from the sediment. AGT concentrations were at least two 

orders of magnitude greater than water concentrations, with the exception of Nymphaea 

odorata. which may be accumulating nickel from the water column (Figure 52). 
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Zinc 

Lemna minor had the highest average AGT concentration of zinc (10,450 ug/g) (Figure 

53). In many instances, sediment concentrations were similar to or greater than AGT 

concentrations for emergents , floating-leaved vegetation submergents. Bacopa 

caroliniana, Eleocharis spp., Nuphar spp., Nymphaea odorata, Nymphoides sp., Panicum 

sp., Myriophyllum sp. , and Utricularia sp. appeared to be concentrating zinc from the 

substrate. AGT concentrations were at least 2 orders of magnitude greater than water 

concentrations for all plants with the exception of Eichhomia crassipes (Figure 54). 
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Phragmites australis, Typha spp., and Potamogeton spp. all had high root tissue 

concentrations (140, 104,63 uglg, respectively), which corresponded closely with 

sediment concentrations (Figure 55). 
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Figure 55. Zinc concentrations in root tissue and sediment. 

Rhizome concentrations of zinc were similar for both Typha latifolia and P. australis (35 

and 36 uglg, respectively) but lower than their respective root concentrations (Figure 56). 

Substrate concentrations (163 and 110 uglg) were much greater than rhizome 

concentrations for these plants. 
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Ratios of AGT concentration to sediment concentration slightly> I. 0 were observed for 

Nuphar spp., Phragmites australis, Ceratophyllum demersum, and Fontinalis 

antipyretica (Figure 57), suggesting that these plants may accumulate zinc from the 

sediment. C. demersum can tolerate the greatest reported maximum water depth of 6. 75 
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Figure 57. Ratio of AGT concentration to sediment concentration of zinc and ranges of average maximum water depths. 

m., whereas Nuphar spp., P. australis and F. antipyretica can only tolerate much 

shallower depths (1.95, 0.61, and 0.8 m, respectively). AGT concentrations were at least 

one to two orders of magnitude greater than water concentrations for all plants (Figure 

58). The smallest ratio was observed for Alternantheraphiloxeroides (40), which may 

suggest that this plant may be absorbing some zinc from the water column. Sediment 



c'oncentrations were not available for this species, so it is difficult to detenrune exactly 

the source of zinc. 
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Nitrogen 

Average AOT concentrations of nitrogen were high for all plants identified throughout 

the literature (> 1 0,000 uglg) (Figure 59). With the exception of Lagarosiphon major, 

AOT concentrations were much greater than sediment concentrations. All AGT 

concentrations were at least three orders of magnitude greater than water concentrations 

(Figure 60). 
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The only nitrogen concentration reported for root tissue was for Potamogeton spp. 

(30,350 ug/g). Both sediment and water concentrations were several orders of magnitude 

lower than root concentration (Figure 61). 
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Figure 61. Nitrogen concentrations in root tissue and sediment. 

Average AGT concentrations of nitrogen were at least 1000 times greater than sediment 

concentrations and at least 10,000 times greater than water concentrations (Figures 62 & 

63). 
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Figure 62. Ratio of AGT concentration to sediment concentration for nitrogen and ranges of average maximum water depths. 
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Phosphorus 

Phosphorus levels in AGT were high for aI plants identified from the literature (> 1,000 

ug/g) (Figures 64 & 65). Levels in AGT, sediment and water displayed trends similar to 
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Figure 64. Phosphorus concentratioIlli in aboveground tissue and sediment 
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those observed for nitrogen, but at lower concentrations. Root concentrations for 

phosphorus were reported only for Potamogeton spp. (6,650 uglg) (Figure 66) which was 

slightly greater than its AGT concentration (5,075 uglg). 

10000 

Ci a a. 
c 1000 ,g 
1! -c 
8 c 
0 
0 100 -c 

" .5 
i 
rtl .., 
Ii 

~ 
Avenge Root Concentration 
Average Sedi.mrot Concentration 

• Vertical dashed line defines rmge 
oftissue concentrltiollS teported. 
•• Solid line represents stlndud 
deviation from the mean tissue 
concenttatioo. 

10 

-
X 

0 

Potam ogeton spp. 

Submergent 

Figure 66. Phosphorus concentrations in root tissue and sediment. 

I 



All AGT concentrations of phosphorus were at least 400 times greater than sediment 

concentrations with the exception of Hydrilla verticillata, whose AGT concentration was 

approximately 16 times greater than sediment concentration (Figure 67), All AGT 

concentrations were at least four orders of magnitude greater than water concentration 

(Figure 68), 
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Figure 67. Ratio of AGT concentration to sediment concentration for phosphorus and ranges of average maximum water depths, 
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Areal Concentrations and Uptake Rates 

Other methods of reporting uptake were based on areal concentrations (g!m2
) and actual 

rates(g!m2/day) , Uptake reported as either an areal concentration or as a rate, was 

reported primarily for nitrogen and phosphorus with few data reported for metals, 

Areal Concentrations (glm2) 

OveraJl, emergents had slightly greater AGT uptake than sedges/grasses/rushes for both 

nitrogen and phosphorus, with the exception of Typha glauca (Figure 69), Uptake for 

metals was reported only for Phragmites australis, which had the greatest affinity for 

zinc (0 ,02 g!m2
) , Average root uptake for only Phragmites australis was obtained from 

the literature, Root uptake was greatest for nitrogen (24 g!m2
) (Figure 70), 
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Figure 69, Average aboveground areal uptake (g/m') 
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Figure 70. Average root areal uptake (glm') 

Metal uptake was low for this species with the greatest uptake reported for zinc (0.113 

glm2
). Information on rhizome uptake was also limited. Typha glauca had the greatest 

uptake for nitrogen (8.76 glm\ while Phragmites australis had the greatest affinity for 

zinc (0.06 g.m2
) (Figure 71). 

Ave/alle Rhizome Areal 
Uptake(glm') 

Figure 71. Average rhizome areal uptake (glm') 



Uptake Rates (g/m2/day) 

In every case, average AGT uptake rates were greater for nitrogen than for phosphorus 

for all plants identified from the literature search (Figure 72). AGT uptake rates of 

nitrogen and phosphorus were greater for emergent and floating vegetation. 

Sedges/grasses/rushes had the poorest ability to uptake nitrogen and phosphorus. The 

only metal uptake rate was reported for chromium, which was taken up by Lemna minor 

at a rate of 0.667 glm2/day. 
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Figure 72. Average abovegroWld uptake rates (g/m'/day) 

Average root uptake rates were limited to Eichhornia crassipes. and Myriophyllum 

spicatum (Figure 73). Eichhornia crassipes. roots had a high affinity for nitrogen (0.38 

gim2/day) while Myriophyl/um spicatum had a lower affinity for phosphorus (0.006 
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Figure 73. Average root uptake rates (glm'/day) 



Summary 

An extensive literature search was performed to compile data on uptake abilities of 

various wetland and aquatic macrophytes. Myriophyllum spp., a submergent plant, 

accumulated some of the highest levels of metals in its AGT including arsenic, cadmium, 

cobalt, copper, iron, lead, manganese and zinc. This plant also tolerates the greatest 

maximum water depth reported of6.5 m. Data for duration of inundation were not 

available for this particular plant. Other submergent macrophytes with notable 

accumulation of metals in AGT include Elodea canadensis (arsenic, cobalt, and iron), 

Hydrilla verticil/ata (cadmium and chromium), Pistia stratiotes (cadmium), 

Ceratophyllum demersum (chromium, iron and lead) and Vallisneria spiralis (chromium 

and lead). Several species of floating vegetation were also able to accumulate high levels 

of metals in their tissue including Azolla spp., (cadmium, cobalt, copper, iron, lead, 

manganese and nickel), Lemna minor (copper, iron and zinc), Spirodela polyrrhiza 

(chromium, iron, lead) and Salyinia natans (manganese). Since these plants are not 

rooted in the sediment, they can withstand deep water depths and can tolerate flooding 

durations of 85-90% of the growing season. 

Data on metal accumulation by root and rhizome tissue were limited mainly to sedges 

and emergents. Root and rhizome tissues typically accumulated higher levels of metals 

than AGT. High levels of metals in root tissue were observed for Phragmites australis 

(cadmium and zinc), Bacopa spp. (chromium and copper), Typha spp. (iron, manganese, 

nickel and zinc), Scirpus /acustris (chromium and copper), Nymphoides spp. (arsenic, 



lead and manganese) and Potamogeton spp. (lead, manganese and zinc). Elevated levels 

of metals were found in rhizome tissues of Typha spp. (copper, iron, manganese and zinc) 

and P hragmites australis (zinc). 

Nitrogen and phosphorus levels were high in AGT for all plants identified from the 

literature search (>10,000 and >1,000 ug/g, respectively). To determine which plants 

take up these nutrients most effectively, areal concentrations and uptake rates were 

examined. AGT areal uptake of nitrogen and phosphorus (g/m2
) was greatest for 

floating-leaved emergents, specifically Nuphar lutea, Nymphaea alba and Nymphoides 

peltata. With respect to time (g!m2/day), Altemanthera philoxerides, Eichhomia 

crassipes and Pistia stratiotes had the highest uptake rates of nitrogen. Hydrocotyle spp. 

and Pistia stratiotes had the highest AGT uptake rates of phosphorus. 

A number ofthe plants identified as being effective in accumulating metals and nutrients 

are also exotic species. These include some species of Myriophyllum and Salvinia, 

Alternanthera spp., Eichhomia crassipes, Pistia spp., and Hydrilla spp. Exotic species 

are considered to be nuisances since they spread rapidly and out compete and displace 

indigenous species. However, by identifying their ability to accumulate high levels of 

some metals and nutirents, these plants can serve a beneficial purpose in treatment 

wetlands. 

The uptake of metal ions by aquatic plants will ultimately depend upon the nature and 

amount of aquatic biomass, its stage of development and earlier treatment, as well as the 



volume of influent water and its metal ion content (Jain et. al., 1988). The potential rate 

of uptake of nutrients by a plant is limited by its growth rate and concentrations in its 

tissue, whereas storage is dependent on both tissue nutrient concentrations as well as the 

ultimate potential for biomass accumulation. Therefore, desirable traits of a plant used 

for nutrient assimilation and storage should include rapid growth, high tissue nutrient 

content, and the capability to attain a high standing crop (Reddy and Smith (eds.), 1987). 

Since the findings of this study are only an estimate of uptake abilities of certain plants, 

one should evaluate the previously mentioned parameters before selecting an aquatic 

plant species for removal of both metals and nutrients. 

Once metals and nutrients have been accumulated in plant tissue, subsequent harvest of 

plant biomass should be performed, which results in the permanent removal of stored 

contaminants from the treatment system (Reddy and Smith (eds.), 1987). If harvesting is 

not performed metals and nutrients accumulated in plant tissue will be returned to the 

system in the form of detritus after the onset of senescence (Mudroch and Capobianco, 

1978). 

Macrophytes are not the sole means for uptake, as microbial activity plays an important 

role in the assimilation, transformation, and recycling of chemical constituents present in 

wastewater (Kadlec and Knight, 1996). However, by serving as a means for uptake and 

providing a substrate for microbial populations, macrophytes are an integral part of any 

wetland treatment system. The hydrologic regime of a wetland regulates which types of 

plants can survive in a particular wetland and is the key feature to which water quality 



wetland functions can be connected (Reddy and Smith (eds.), 1987). By understanding 

which plants can accumulate high levels of contaminants and the types of water 

conditions they can tolerate, one can effectively enhance the treatment goals of a wetland 

system. 
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